用时:13ms

5g研究报告-PDF版

您的当前位置:首页 > 信息科技 > 5G
  • 电信管理论坛(TMF):5G核心-探索电信运营商(CSP)的发展路径(2022)(英文版)(32页).pdf

    REPORTAuthors:Dean Ramsay,Principal Analyst Rahul Gupta,Senior AnalystEditor:Ian Kemp,Managing Edito.

    发布时间2022-11-28 32页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 电信管理论坛(TMF):网络生命周期自动化-CSP能否优化5G投资?(2022)(英文版)(36页).pdf

    Ed Finegold,Contributing Analyst,TM ForumIan Kemp,Managing Editor,TM ForumAnnie Turner,Contributing .

    发布时间2022-11-25 36页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 5GDNA:5G工业互联赋能5G全连接工厂技术白皮书(19页).pdf

    5G工业互联赋能5G全连接工厂技术白皮书5GDNA确定性网络产业联盟2022年11月目 录01 什么是5G工业互联02 5G工业互联发展阶段2.1 5G工业互联阶段一:5G车间生产网2.2 5G工业互.

    发布时间2022-11-24 19页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 中国信通院:5G时代“AIoT+金融”研究报告(2022年)(38页).pdf

    (20222022 年年)中国信息通信研究院云计算与大数据研究所 2022 年 11 月5 5G G 时代“时代“A AIoTIoT+金融”金融”研究报告研究报告 版权声明版权声明 本报告本报告版权属.

    发布时间2022-11-24 38页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 中国信通院:5G应用创新发展白皮书——2022年第五届“绽放杯”5G应用征集大赛洞察(150页).pdf

    5G 应用创新发展白皮书15G5G 应用创新发展白皮书应用创新发展白皮书2022022 2 年第年第五五届届“绽放杯绽放杯”5G5G 应用征集大赛洞察应用征集大赛洞察5G 应用创新发展白皮书2目录5G.

    发布时间2022-11-21 150页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 通信行业·产业追踪(75):国内首张企业5G专网频率发放重视工业互联网投资机遇-221120(17页).pdf

    国内首张企业 5G 专网频率发放,重视工业互联网投资机遇 Table_Industry 信达通信产业追踪(75)Table_ReportTime2022 年 11 月 20 日 蒋 颖 通信行业首席.

    发布时间2022-11-21 17页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 中国连锁经营协会:“5G+零售”行业应用白皮书(2022)(54页).pdf

    “5G+零售”行业应用白皮书前 言PREFACEI传统零售业加快适应市场变化,正从产品渠道为王向消费者为王的发展思路转变,消费品市场出现更多具有城市特色和区域特征的零售品牌,“商业综合体”相继出现,改.

    发布时间2022-11-18 54页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 2022年5G-Advanced产业白皮书(英文版)(59页).pdf

    F5G AdvancedIndustry White PaperBylinersChina UnicomCAICTCMCCBhartiBUPTCEEDICEPREICSUCTTCe&Fiber HomeGlobe TelecomHUSTHUAWEIITEIOrangeONAPost LuxembourgPT TelkomQishuai Digital TechnologyUniversity of PatrasUnion SHENZHEN HospitalVTALZTEXiongyan Tang,Guangquan Wang,Zelin Wang,He zhang,Yan Shao,Xiangkun Man,Yue Sun,Shikui Shen,Shan DongLi Ao,Qian LiuHan Li,Dechao Zhang,Junwei Li,Yunbo LiPraveen MaheshwariJie Zhang,Yongli Zhao,Zhiguo ZhangXu ZhangYanfei HuYing LiRaul MuozMohamed al MarzooqiSongtao Chen,Shaoyong Peng,Hongliang Li,Yuzhou SuiEmmanuel Lazaro R.EstradaMengfan Cheng,Qi YangJingji Wang,Qian Gong,Xiaohua Lu,Chun Sun,Xianlong LuoDan LiuPhilippe chanclouRuili ZhangOlivier FerveurNAQichang He,Xianming GaoIoannis TomkosSuiSong ZhuEvandro BenderLairong Luo,Chuanzhu Liu,Haijun Zhang,Mingsheng Li,Meng WangCONTENTSF5G Review and Evolution to F5GAdvancedF5G Development ReviewFour Driving Forces for the Evolution to F5GAdvancedF5G Advanced ApplicationScenariosTo Home:Immersive XR and Smart House,BuildingSmart New LivesTo Enterprise:FTTO/FTTM Integrates IT and OT,Enabling Enterprises DigitalizationTo Computing:High-Bandwidth,Deterministic,andSchedulable Transmission Capacity,AchievingPremium ComputingGreen All-Optical Base,Improving Bearer NetworkEnergy Effjciency 10-FoldF5G Advanced Evolution Path10 Key Technologies of F5GAdvancedF5G Advanced Industry Objectivesand Characteristics0407091620400 Gbps and 800 Gbps or Higher Ultra-broadbandE2E Wavelength Switching OXCAgile Service Provisioning ProtocolOptical Service Unit(OSU)50G PONWi-Fi 7FTTR Networking with Centralized Managementand ControlPON Multi-Dimensional SlicingNative Intelligence for Autonomous NetworksHarmonized/Integrated Communication andSensingSummary and ProspectsAcronyms and Abbreviations313203F5G Advanced Industry White PaperIn February 2020,the European Telecommunications Standards Institute(ETSI)released the fjfth-generation fjxednetwork(F5G)standard and proposed the vision of Fiber to Everywhere.After more than two years ofdevelopment,F5G has achieved rapid development from standards organizations to industry applications,withnearly 100 members,more than 1000 documents published,and 13 work items(WIs)set up for technical research,which greatly promotes the standardization of F5G applications.The establishment of the World Broadband Alliance(WBBA)at the end of 2021 marks a new beginning of F5G from standards to industrial applications.In September2022,ETSI released the F5G Advanced standard white paper to promote the continuous evolution of the F5Gindustry.F5G networks are being rolled out worldwide and starting to play an important role in home broadband,publicservices,and industry convergence.Major economies worldwide have formulated or are formulating F5G gigabitbroadband strategies and related policies,and we are witnessing accelerating commercial deployment and industryconvergence related to F5G.Four forces drive fjxed networks to continuously evolve and enter the F5G Advanced era:Fiber networks connect the real world and virtual world,and the network bandwidth evolves from 1 Gbps to 10Gbps.Optical networks extend from the ICT industry to vertical industries,helping these industries go digital.Fibers carry communication as well as sensing services to generate greater value.Fiber networks evolve to greener architectures,improving energy effjciency 10 fold.In the next 10 years,gigabit access will be widely used,10G access will be put into large-scale commercial use,andenterprise cloudifjcation and digital transformation will go deeper.The intelligent era of Internet of Everything(IoE)is coming and fjxed networks are facing unprecedented opportunities.Based on new scenarios and applications,this white paper explores architecture evolution and new networkcapabilities,focuses on key requirement scenarios such as home,enterprise,computing network,and green opticalnetwork,and defjnes the industry objectives,core features,key network indicators,evolution paths,and key technicalcapabilities of F5G Advanced.It aims to provide requirement references and technology trends for F5G Advanced,explore new directions for network evolution,build industry consensus,and jointly move towards the new era of F5GAdvanced.Preface04F5G Advanced Industry White PaperIn February 2020,the European TelecommunicationsStandards Institute(ETSI)offjcially defjned the fjxednetwork generations for the fjrst time based on coretechnologies such as 10G PON fjber to the room(FTTR)for broadband access,Wi-Fi 6,and single-wavelength 200G for optical transmission opticalcross-connect(OXC).In addition,ETSI released theFifth-Generation Fixed Network(F5G)standard andproposed the industry vision of Fiber to Everywhere.The essence of the vision is to promote fjber-basedbroadband on the access side to achieve gigabit rates,while building an all-optical base on the transport sideto provide premium transmission for various industries.Once released,the standard and vision quicklygarnered wide attention and stimulated discussionwithin the fjxed network industry.Meanwhile,thenumber of ETSI members increased to approximately100 within two years,more than 1000 articles werereleased,and over 60 F5G workshops were held.TheF5G standard has also been accepted by otherstandards organizations and adopted in industryapplications.In addition,the World Broadband Alliance(WBBA)was established at the end of 2021,markingthe start of F5G commercialization.Since then,the F5G fjber-based digital base hasbenefjted various industries,enabling the digitalizationof homes,enterprises,utility services,and socialgovernance.According to a research report released bythe Chinese Academy of Social Sciences,F5G canincrease Chinas GDP by 0.3ch year from 2020 to2025.F5G is the cornerstone of the digital economyand has become a core strategy for global ICTinfrastructure development.In Europe,the EU releasedthe 2030 Digital Compass:the European way for theDigital Decade and Guidelines on Very High CapacityNetworks(VHCN)to guide the construction of gigabitfjber networks in European countries in terms ofpolicies,funds,and supervision.In China,the 14th Five-Year Plan clearly proposes to fully deploy gigabit fjbernetworks,accelerate gigabit city construction and200G/400G network upgrade,and formulate a three-year action plan to ensure target achievement.Inaddition,more than 20 countries have released top-level plans for fjber broadband,such as Thailands GigaThailand,Egypts Decent Life,Moroccos NBN 2025,Nigerias NNBP 2025,and Cote dIvoires NationalBroadband Implement Plan,accelerating worldwidefjber broadband deployment.For another example,Indias Digital India plan aims to build a digitalsociety and knowledge economy in nine fjelds,such ashigh-speed broadband and ubiquitous mobile access,and promote the comprehensive digital transformationof Indian society.In consumer scenarios,which feature high bandwidth,low latency,and ubiquitous connections,F5G canincubate new products,applications,and services tobetter meet the ever-increasing ICT requirements ofconsumers.In the production domain,optical fjbers are extendingfrom homes to campuses,factories,and machines.Thefjber-in-and-copper-out development becomes the new1.F5G Development ReviewF5G Review and Evolution toF5G Advanced05F5G Advanced Industry White PaperUnlike previous generations of communicationsnetworks,the F5G gigabit optical network is regardedas an important part of the new informationinfrastructure,forming the information artery ofeconomic and social development.It plays animportant role in enabling development of the digitaleconomy and facilitating digital transformation acrossvarious industries.Within this context,the EU proposedthe 2030 Digital Compass plan and formulated thegigabit all-optical strategy.China also takes gigabitoptical network convergent industry applications asan important goal.From the industry evolutionperspective,F5G needs to address the followingchallenges:UHD immersive experience requires higher-bandwidth and lower-latency networks.Astechnologies develop and metaverse applicationsemerge,the development of industries such as VR,AR,XR,and optical fjeld display is greatly promoted.According to Huaweis research and third-partyconsulting reports,more than 1 billion users willexperience the immersive virtual world through XR andinteract with the physical world by 2030.Building avirtual world with immersive experience and naturalinteraction experience requires a bandwidth of 1 Gbpsto 10 Gbps and a latency of 5 ms to 20 ms.In addition,to ensure the concurrent experience of multiple homeand enterprise users,bandwidth needs to be increasedby 10 times.All these pose new challenges to existingF5G gigabit network capabilities.Digitalization of industries such as manufacturing,energy,and transportation requires furtherimprovements in real-time performance andnetwork reliability.F5G drives optical networks intothe industrial fjeld.With the acceleration of industrialdigitalization and intelligent upgrade,as well as thelarge-scale development of applications such as ultra-HD video backhaul(such as machine vision)andremote motion control,20 s latency,20 ns jitter,zeropacket loss,and 99.9999%reliability connections arerequired.However,the current serial bus latency ishigher than 100 s,and the latency and jitter areaccumulated site by site,which cannot meet theservice requirements.Therefore,a new fjeld bus isrequired to meet the strict requirements of industrialcontrol.Energy and transportation production networkshave stringent requirements on network security,reliability,and latency.With the development of high-2.Four Driving Forces for the Evolution to F5G Advancedtrend of network construction.Fiber-To-The-Offjce(FTTO)has been deployed in more than 15,000education,healthcare,and fjnancial institutions.Fiber-To-The-Machine(FTTM)has been applied in more than100 projects,covering safe production of coal mines,remote port control,and all-optical transportationintersection.F5G features environmental protection,simplifjed architecture,large bandwidth,deterministiclow latency,and high security and reliability,greatlyassisting digital transformation in various industriesand improving productivity of traditional industries.According to statistics from global operators,100million fjber to the home(FTTH)users,70 milliongigabit broadband users,800,000 FTTR users,and20,000 fjber to the offjce(FTTO)and fjber to themachine(FTTM)enterprise customers were developedfrom the year 2020 to 2021.In other words,the F5Gindustry ecosystem is fmourishing.06F5G Advanced Industry White Paperbandwidth services such as HD video backhaul,hardpipes with 1 Gbps bandwidth,1 ms latency,and99.999%reliability must be provided for each site tocarry and enable the automatic and intelligent upgradeof operational technologies(OTs),accelerating thedigital transformation of industrial productionnetworks.Ubiquitous optical cable networks requiredigitalized management and enhanced environmentawareness capabilities.With the in-depth deploymentof Fiber to Everywhere in F5G,optical fjbers are furtherextended to end users and devices,the number ofconnections increases by 10 times,and the total lengthof deployed optical fjbers increases by 20%.Operatorshave massive dumb cable resources,which makemanagement and maintenance complex.Digitaltechnologies are required to accurately locate opticalcable positions and identify faults,achieving digitalizedand visualized management.Moreover,the large-scaledeployment of F5G in industries promotes theubiquitous use of optical cables in enterprise scenarios.In addition to satisfying enterprise communicationrequirements,optical fjbers can be used to senseparameters such as vibration,temperature,and stress.By accurately sensing external environments,opticalfjbers play a key role in the online inspection of oil andgas pipelines.Accelerating enterprise digitalization andcloudifjcation requires simplifjed,green,and low-carbon network architectures.With the accelerationof enterprise cloudifjcation and digital transformation,services are centrally deployed on the cloud,traffjc ismainly aggregated from terminals to data centers,andhigh-bandwidth applications,such as 8K and XR,drivethe compound annual growth rate(CAGR)of networktraffjc to exceed 26%in the next 10 years,requiringnetwork bandwidth to increase by more than 10 times.However,the existing multi-layer hop-by-hopforwarding network architecture faces challenges interms of latency and power consumption.Green all-optical networks with one-hop transmission,all-opticalgrooming,and simplifjed and fmat architecture arerequired to improve network energy effjciency by 10times to better meet enterprises requirements fordigital development.07F5G Advanced Industry White PaperF5G Advanced Industry Objectivesand CharacteristicsF5G Advanced focuses on optical fjbers,OTN sites,andWi-Fi spectrum.It is deeply integrated with homes,industry applications,and optical sensing,and it helpsin the realization of the Internet of Everything(IoE)bybuilding all-optical bases for transmission and accessnetworks.The goal is to achieve ubiquitous all-opticalinfrastructure like water and electricity;realize theindustry vision of Fiber to Everywhere,OTN toEverySite,integrated sensing,and all-opticalautonomous networks.OTN to DCOTN to CO/OLTOTN to BuildingCentral cloud/edge cloudCO/OLT siteCommercialbuildingFiber to Everywhere for ubiquitous optical accessAll-optical autonomous network(L4)OTN to EverySite for ubiquitous optical transmissionFTTH,FTTR,FTTO,FTTMOTN to DC,OTN to CO/OLT,OTN to Building10Gbps Everywheres-level latency 99.9999%reliabilityms-level low latency circleFTTH,FTTRFTTR-2BIndustrial opticalnetworkHomeEnterpriseIndustrialscenarioIntegrated sensing andcommunicationThe details are as follows:The access-side bandwidth will evolve from 1 Gbps to10 Gbps,and ubiquitous fjber networks(Fiber toEverywhere)need to be deployed as the digitalfoundations for connecting the real and virtual worlds.In addition,OTN needs to be extended downward tobuildings,communities,sites,and data centers(DCs),and needs to support one-hop access to the cloud torealize OTN to every site and build premium anddifgerentiated all-optical bearer networks that helpvarious industries achieve digital transformation.Figure|F5G Advanced industry objectives08F5G Advanced Industry White PaperUbiquitous optical cable networks can be managed indigital mode to sense the environment,integratecommunication and sensing,unleash the infjnitepotential of optical fjbers,and facilitate thedigitalization and unmanned inspection of variouspipelines,thereby improving the effjciency of resourcemanagement.Evolving from automation to intelligence,an all-opticalautonomous network accelerates difgerentiatedproduct operation.Through the upgrade to an L4autonomous network,the all-optical bases of transportand access networks can be intelligently managed,home broadband experience can be self-optimized,andprivate lines and premium computing capabilities canbe quickly accessed.Based on these industry objectives,the main difgerencebetween F5G Advanced and F5G is that the formerdefjnes green agile all-optical networks,real-timeresilient links for industrial manufacturing,and opticalsensing and visualization based on F5G features thatare continuously expanding.The specifjc features areas follows:Real-timeResilient LinkOptical Sensing and VisualizationRRLGAOOSV/F5G2020:F5G era2022:F5G Advanced eraF5GAdvancedeFBBEnhanced Fixed BroadbandeFBBEnhanced Fixed BroadbandGREGuaranteed ReliableExperienceGREGuaranteed Reliable ExperienceFFCFull-fjber ConnectionFFCFull-fjber ConnectionFigure|Evolution from F5G to F5G Advanced and continuous expansion of industry characteristicsGreen AgileOptical Network Enhanced Fixed Broadband(eFBB):from gigabitaccess to 10G home,10G campus,and 100Tnetworks,achieving 1 Gbps to 10 Gbps Everywhere(line bandwidth doubled from 200G/400G to 400G/800G)Green Agile Optical Network(GAO):OTN to everysite,building a green agile all-optical network withone-hop transmission and 10-fold energy effjciencyimprovement Full-fjber Connection(FFC):building digitalfoundations for smart homes,enterprise-homecollaboration,and all-optical campuses to increasepremium connections Real-time Resilient Link(RRL):building all-opticalproduction networks with 99.9999%ultra-highreliability and s-level deterministic low-latency tohelp various industries go intelligent Guaranteed Reliable Experience(GRE):homebroadband changing from visible fault locating toexperience self-optimization,and fast access toprivate lines and computing networks Optical Sensing and Visualization(OSV):fromcommunication to sensing,unleashing unlimitedpotentials of fjber networks09F5G Advanced Industry White PaperF5G Advanced ApplicationScenarios1.1 Immersive XR Whole-HouseIntelligence,Enabling Premium Home LifeWith the improvement of terminal capabilities andlarge-scale deployment of gigabit networks,homeservices evolve toward multi-screen,diversifjed,andintelligent features,enabling smart lifestyles.From oneperspective,services are evolving from 4K to 8K to XR.According to a third-party consulting report,the XRindustry will witness rapid development in the next fjveyears,and by 2030,over 1 billion users will enjoy animmersive experience of the virtual world.For example,in work scenarios,users will wear headsets at home tocreate a virtual environment and interact withcustomers and colleagues as if they are meeting inperson.Additionally,in online learning scenarios,moreeducation resources will be shared over the Internet.Students will use AR glasses to observe chemicalreactions more vividly.In daily life scenarios,XR willenable people to hold virtual parties and chatremotely.From another perspective,the number ofterminal connections will increase by more than 10times.Whole houses will become intelligent,andvarious terminals will interact with each other toprovide smart care services.For example,when youreturn home after work,your favorite lights,music,fragrance,and TV programs will turn on automatically,and the smart bed,smart pillow,and bedroom lightingand sound efgect systems will collaborate to make youfeel comfortable.3D light sensing can accurately detecthuman postures and connect with cameras to providesmart care for the elderly.Services such as immersive XR and whole-houseintelligence will pose higher requirements on networkbandwidth and latency.In that regard,F5G Advancedprovides new capabilities such as 50G PON andsupports FTTR Wi-Fi 7 to implement carrier-class Wi-Fiexperience assurance,such as 110 Gbps seamlesscoverage,latency within milliseconds,and seamlessroaming.F5G Advanced also enables dizziness-freeimmersive interactions,privacy-protected healthcare,and premium smart life experience.New businessmodels and services will appear,opening market spaceworth trillions of dollars.1.2 Homes Evolve from EntertainmentCenters to Multi-service Centers,Calling forEnterpriseHome CollaborationDue to factors such as the COVID-19 pandemic,homeshave evolved from entertainment centers to multi-service centers,where online education,remote offjce,and live broadcast have become important services.Asmany people now work from home,rigid demandshave developed for services such as smooth HD videoconference,convenient fjle transmission,low-latencyremote access,and physical layer permission controland isolation.These changes pose higher requirements on network1.To Home:Immersive XR and Smart House,Building Smart New Lives10F5G Advanced Industry White Paperbandwidth,latency,encryption,and isolation,callingfor service quality that is on par with that of privatelines.F5G Advanced can provide difgerentiated end-to-end(E2E)pipes,one-hop cloud access for high-valueservices,and isolation for OTN enterprise private lines.In this way,the service quality of home broadband canbe guaranteed,and users can enjoy services such asenterprise-home collaboration and live broadcastbroadband.This will change consumer traffjc tobusiness traffjc,maximizing the value of broadbandnetworks.1.3 Autonomous Premium BroadbandNetwork Enables Operators to Shift fromSelling Bandwidth to Monetizing ExperienceWith the rapid development of gigabit opticalbroadband and increase in users,the diversifjed andpersonalized requirements of home services increasesharply,posing higher requirements on fjberbroadband networks.AI and big data technologies areintroduced to broadband networks to enable operatorsto shift from selling bandwidth to monetizingexperience,improving user loyalty and meetingcustomized service requirements.The AutonomousNetworks white paper released by the TM Forumdefjnes the L0L5 autonomous network classifjcationstandards.Along these lines,multiple operatorsrecently released white papers,aiming to achieve L4autonomous networks by 2025.These networks willfeature highly automated perception,analysis,decision-making,and execution,achieving zero-waitservice provisioning,zero-touch maintenance,andzero-trouble services.F5G Advanced introduces new technologies such as bigdata and AI to build E2E digital O&M capabilities forhome broadband services,implementing highlyautomated network awareness,analysis,decision-making,and execution,as well as smart hierarchicalbroadband operation.From one perspective,thesefeatures enable real-time visualization and self-healingof low-quality experience,helping operators shift fromcomplaint-driven passive O&M to experience-drivenproactive optimization,and from offmine traditionalmarketing to online precision marketing.From anotherperspective,high-value service experience isautomatically optimized.To do this,gold,silver,andcopper pipe services of difgerent assurance levels areprovided and dynamically diverted to the cloud,implementing self-optimization of STA-level serviceexperience.F5G Advanced can help operators improveoptical broadband service quality and user experience,improve user satisfaction,and accelerate thedevelopment of new services.11F5G Advanced Industry White Paper2.1 Immersive XR Applications Create Brand-New Experience in Offjce,Learning,andTelemedicine ServicesEnterprise digitalization is accelerating.In offjce,school,and hospital scenarios,XR is widely used,datais migrated to the cloud,and cross-region intelligentcollaboration is gradually becoming the mainstream.For example,in hospital scenarios,smart vital signdetection terminals are widely used to providehealthcare for the elderly and make premium medicalservices accessible to all.Medical check data such as3D CT is migrated to the cloud in real time,enablingdoctors to remotely monitor the health status ofpatients using 360-degree HD videos.Additionally,XRis widely used in smart classrooms to create animmersive experience.In enterprise scenarios,the goalof digital offjce is to make users feel like theircolleagues are present in the same space,achievingmore natural and effjcient communication.ImmersiveXR delivers this kind of experience.You can observe thefaces of meeting participants and communicatethrough eye contact and body language,like youwould without a screen.Services such as enterprise 8K live broadcast,XR offjce,and XR smart classroom pose higher requirements onnetworks.F5G Advanced provides new capabilities suchas 50G PON and FTTR Wi-Fi 7 to achieve 110 Gbpsseamless coverage and deterministic latency withinmilliseconds.100 GB design fjles can be uploaded anddownloaded in minutes,and 3D CT images can beviewed in seconds,delivering optimal networkexperience to enterprise and industry customers.2.2 Industrial Optical Network Builds anOptical Base for the Industrial InternetIndustry digitalization is picking up speed as the socialeconomy develops,and industrial manufacturing isdeveloping toward digital,intelligent,unmanned,andfmexible operations.3D machine vision qualityinspection,cloud-based PLC,and centralized controlapplications will become the mainstream in futureindustrial manufacturing.However,applications suchas 3D quality inspection,cloud-based PLC,and remotecontrol over the industrial Internet pose highernetwork requirements,such as uplink bandwidth of110 Gbps,99.9999%reliability,deterministic latencywithin milliseconds,and production network expansionin minutes.In the F5G Advanced phase,industrial optical networkswill bring benefjts such as energy saving,stable anti-interference,high bandwidth,fmexible capacityexpansion,long-distance coverage,deterministic s-level latency and jitter,and E2E hard pipe isolation toensure industrial-grade premium networks.Thebenefjts will boost services such as unmanned ports,fmexible and intelligent factory production lines,and 3DAI quality inspection.These industrial optical networkswill serve as the optical base for the industrial Internetand further unleash the productivity of variousindustries.2.3 Intelligent Transformation of Industries:Evolution to Green,High Reliability,andDeterministic Quality2.To Enterprise:FTTO/FTTM Integrates IT and OT,Enabling Enterprises Digitalization12F5G Advanced Industry White PaperWith deepening intelligent transformation,thetraditional energy and transportation industries aredeveloping toward cloudifjcation,videos,and IoT.Takeelectric power as an example.Clean and low-carbonenergy has become a global trend;however,with newapplication scenarios such as PV power,wind power,and digital IoT substations,electric power companiesneed a new power system network that provides thefollowing capabilities:1.Accurate data collection andprecision control for the distribution network(fromtelemetering to teleindication)to reduce the annualpower outage duration and schedule complex grid-tiedpower devices,such as rooftop PV panels and chargingpiles.2.s-level timing and partial discharge especially during lighting strikes for hundreds ofsensors in a substation and thousands of sensors ineach digital converter station as substations go digital.3.Deterministic latency lower than 5 ms and hardisolation to ensure smart terminals and videosurveillance do not afgect production service stability asgrid-tided and distribution network terminals increaseexponentially.Compared with traditional networks,future powercommunication networks will require moreconnections,more reliable communication quality,andlower deterministic latency within milliseconds toensure the 100%security and reliability of collectionand control services.This is the only way that newpower systems can meet peak cut requirements.In theF5G Advanced era,the optical service unit(OSU)technology based on hard slicing provides E2E hardpipes as micro private lines to ensure thecommunication quality of terminals.OSU can not onlydeliver high OTN bandwidths,but also carry small-bandwidth services with guaranteed latency to avoidbandwidth waste.With these benefjts,OSU is theoptimal technical path for network upgrade andevolution.In long-distance transmission scenarios for industrieslike coal mines,highways,and railways,isolatedinformation points are connected by optical fjbers toimplement data aggregation and sharing and promotethe development of digital applications.2.4 Communication and Sensing Integration:Unleashing the Full Potential of OpticalNetworksAs fjbers are dumb resources,the collection ofinformation from optical networks to locate anddemarcate faults has always been an industry painpoint,especially after massive optical cables aredeployed.In the F5G Advanced era,the intelligentdigital optical path technology is introduced toimplement E2E visualization of the ODN topology andoptical power,allowing meter-level precision diagnosis.This helps operators build a digital optical cablenetwork that features real-time visualization,preciseperception,and effjcient O&M,signifjcantly improvingO&M effjciency.In addition to transmitting signals,optical fjbersperform well when sensing temperature,vibration,andstress.Realizing that fjber sensing is green,effjcient,and intrinsically safe,various industries have startedutilizing fjber sensing technologies in productionactivities.For example,in the traditional oil and gasand rail transportation fjelds,long-distance inspectionneeds to be performed manually,which is costly(up toCNY20,000/km/year),time-consuming,and labor-intensive,but does not produce accurate results in realtime.Fiber sensing is ready for commercialization inthe F5G Advanced era,and it can work with intelligentalgorithms to support pipeline detection(for example,in the oil and gas industries)and perimeter securityprotection(for example,in airports)to achieve 99curacy and meter-level precision,realize unmannedinspection around the clock and early detection andwarning of intrusion events,considerably improve the13F5G Advanced Industry White Paperinspection effjciency,and efgectively reduce pipelineaccidents.In the future,fjber sensing will be able to work withspectrum detection technologies to measure theconcentration of microelements and gases.Forexample,spectral gas sensing will be used to detectfmammable and explosive gases in urban undergroundcorridors and harmful gas leakage in refjneries.It willnot only generate warnings in advance,but alsoindicate the distribution of toxic and harmful gases inreal time,helping fjrst responders determine theleakage source in seconds and develop rescue plans.Based on the fourth-generation atomic spectrum laserinduced breakdown spectroscopy(LIBS),fjber sensingcan replace the traditional X-ray fmuorescence andgamma ray methods,enabling real-time,radiation-free,and high-accuracy element content detection inthe metallurgy and mining industries.3.To Computing:High-Bandwidth,Deterministic,and SchedulableTransmission Capacity,Achieving Premium Computing3.1 High-Bandwidth,Deterministic,Schedulable,and Fast and Flexible AccessRequired for Computing Power to Reach EndUsersHigh bandwidth requirements for computing hubinterconnection:Driven by national policies such asnew infrastructure construction and digitaltransformation and enterprises requirements for costreduction and effjciency improvement,data centers inChina have developed rapidly in recent years.To put itinto perspective,by the end of 2021,the total numberof racks used in data centers across China exceeded 5.2million,with a compound annual growth rate(CAGR)over 30%the past fjve years.The number of racks inlarge-scale data centers is increasing rapidly,accounting for 80%of the total.According to the hubcluster construction plan released by some provincesand cities,the 10 hub clusters will have over 5 millionracks.The western hub clusters are mainly used tomeet the national computing power requirements,withoutbound bandwidth exceeding 80%.In eastern clusterhubs,the outbound bandwidth will reach 35%.Theeast-data-west-computing project will require a muchhigher backbone network bandwidth.Predictionsindicate that after the planned number of racks aredeployed,the backbone network bandwidth willincrease to 3000 Tbps or higher for computing powerinterconnection.Deterministic low latency for computing powerinterconnection:Multi-level collaboration is requiredbetween east-data-west-computing and data centers,and data center interconnect(DCI)networks must bestable and reliable with low latency.For example,active-active services in data centers require latency aslow as 12 ms.According to the Computing HubImplementation Solution for the National IntegratedBig Data Center Collaborative Innovation Systemreleased by the National Development and ReformCommission of China(NDRC),to ensure properallocation of cold,warm,and hot services,the E2Eunidirectional network latency between data centersmust be within 20 ms in principle.Flexible scheduling capabilities for cloud-edgecollaboration between all-optical transmission14F5G Advanced Industry White Papernetworks:As predicted by Gartner,approximately 75%of enterprise data will be generated and processedoutside data centers by 2025.Edge computing is widelyused in scenarios such as smart transportation,securitysurveillance,and the industrial Internet,undertakingmany real-time tasks that require fast data processing.However,a large amount of processed data still needsto be aggregated from edge nodes to the central cloudfor further big data analysis,mining,data sharing,andalgorithm model training,and new algorithm modelsneed to be pushed to edge nodes to promptlyimplement updates.In addition,massive data storedon edge nodes needs to be backed up in the cloud toprevent data loss caused by edge node faults.Therefore,effjcient collaboration is required betweenclouds,between clouds and edges,and between edges.In this regard,the all-optical transmission networkserves as a bridge for connections and must providehighly fmexible scheduling capabilities to meet cloud-edge collaboration requirements.Convenient,fmexible,agile,secure,and reliabletransmission networks for users to accesscomputing networks:Government,fjnance,schools,and enterprises are usually distributed in difgerentareas of cities.The all-optical transmission networkmust provide access assurance for these organizationsto obtain computing services when necessary.Somecore enterprise services require high security and lowlatency,while some dynamic services require fmexiblescheduling,quick response to changes,and promptresource provisioning and releasing.In the F5G Advanced era,the all-optical transmissionnetwork must provide high bandwidth,deterministiclow latency,fmexible scheduling,and agile access tocomputing services.3.2 Autonomous Networks for PremiumAccess to Computing ServicesE2E resource coordination for nationwide scheduling ofcomputing power:In the computing network era,computing power needs to be scheduled nationwide.This requires central coordination of computingresources and poses challenges to the originalhierarchical management by province and city.Thethree major operators in China have approximately15,000 to 20,000 OTN devices in large provinces,approximately 7000 in medium-sized provinces,andapproximately 3000 in small provinces.In the next fjveyears,each operator will have approximately 300,000to 500,000 OTN devices in China.These massivedevices require centralized management and control,E2E transmission capacity scheduling,as well as O&Mcapabilities such as complex alarm management andanalysis,fault locating and demarcation,and potentialfault analysis.After hub computing power,provincial computingpower,and municipal edge computing power aredeployed,users computing power requirements can bemet by difgerent computing power resources.As thebrain of the computing network needs to matchresources with requirements based on latency,bandwidth,and computing power,the managementand control system of the all-optical transmissionnetwork must efgectively collaborate with the brain ofthe computing network to select resources andestablish network connections.At the early stage of F5G Advanced,the network-widetransmission capacity is visualized to support fmexiblescheduling of network resources and improve theeffjciency of network resource allocation.During thegrowing stage of F5G Advanced,network resources willbe fmexibly scheduled with highly reliable servicecapabilities,such as intelligent scheduling withinseconds,99.999%availability,guaranteed bandwidth,and low latency.As F5G Advanced matures,millions ofnetwork nodes will be centrally managed and fmexiblyscheduled nationwide,enabling effjcient computingpower allocation for projects like east-data-west-computing.15F5G Advanced Industry White PaperFacing massive data transmission and carbonneutralization requirements,high-effjciency andenergy-saving technical solutions are required fornetworks.On the bearer network,optical fjbertransmission is most energy effjcient and the fjrstchoice to achieve premium transmission and carbonneutralization.In 2C scenarios,optical fjbertransmission can be extended to base stations to fullymeet the access bandwidth and latency requirementsof 5G and future 6G.In 2H scenarios,optical fjbertransmission can be used to replace copper cabletransmission,reducing energy consumption by 75%and meeting users future digital home experience.In2B scenarios,optical fjber connections extended tooffjces and factories greatly reduce the powerconsumption of signal transmission,and provide a highbandwidth and low latency to improve user experience.When the network evolves to the F5G Advanced phase,an optical network needs to achieve green and lowcarbon emission from four dimensions.First,changethe optical spectrum from the C-wave band to the L-wave band,greatly improving the single-fjber capacityand reducing the power consumption per bit.Second,improve the hardware energy effjciency of devices bymeans such as liquid cooling,intelligent temperaturecontrol,and tidal bandwidth algorithm.Third,reconstruct DC centers to improve the site energyeffjciency.Fourth,change the traditional optical-layerarchitecture deployed in FOADM mode which is laborintensive and ineffjcient in resource,equipment roomspace,and energy usage to the OXC solution whichsimplifjes the deployment at the core and aggregationoptical layers.In addition,the OXC solution poolsmetro WDM resources to enable a single aggregationsite to connect to multiple access rings through onepooled board,implementing multi-ring sharing,improving wavelength resource utilization,reducingoptical-layer complexity,and realizing automaticwavelength planning.Based on the two technologies,an end-to-end all-optical simplifjed target network canbe constructed to enable one-hop access to the cloudand unifjed bearing of multiple services.In this way,energy consumption is optimized in the networkarchitecture,and the energy effjciency of the entirenetwork is improved by more than 10 times.Multiple energy-saving innovations have beendeveloped to realize green operation.A board canenter the sleep mode in ofg-peak hours to save energy.The optical network energy effjciency can bedynamically optimized at multiple layers,from slots,boards,to ports and interfaces.Links can be set uprapidly and resiliently in minutes at the optical layerand in seconds at the electrical layer for easy serviceaccess.The bandwidth can be adjusted from Mbps toTbps losslessly in milliseconds to achieve precisionoperation and control.4.Green All-Optical Base,Improving Bearer Network EnergyEffjciency 10-Fold16F5G Advanced Industry White PaperGlobal operators develop FTTH networks in threephases to expand service boundaries and improveservice quality.In the fjrst phase,all-optical networks are green withlow carbon,high bandwidth,high stability,and lowlatency features,and they provide advanced servicesand applications for users.All-optical networks arebecoming a key strategy for green and digitaltransformation in countries.Governments andoperators worldwide continuously reduce the TCO ofFTTH construction and accelerate the construction byguiding optical fjber policies,planning integratedoptical cable networks,reusing various resources suchas base stations and backhaul optical fjbers on livenetworks,and introducing digital pre-connection ODNtechnologies.In the second phase,as services and broadbandpackages are upgraded to 500 Mbps to 10,000 Mbps,valuable services such as 4K/8K/VR,online offjce/education,and live broadcast are developed.Bybuilding planning,construction,acceptance,andmaintenance capabilities,optical fjbers are extended torooms,and the combination of 10G PON and FTTRbuilds a gigabit home network with true gigabitexperiences,ultra-low latency,whole-house coverage,and seamless roaming.In the third phase,with the development of XR,8K,cloud gaming,and multi-terminal access,the truegigabit home network evolves to the smart home,where various terminals are interconnected throughall-optical base Wi-Fi 7.To carry latency-sensitiveservices such as VR and 8K,the home base must havedeterministic low latency,zero interference,and multi-spectrum Wi-Fi.The typical characteristics of this phaseare as follows:Network bandwidth is upgraded to 50GPON,and Wi-Fi 7 implements wide-spectrum access.The network is upgraded to support the L4autonomous network.With network experiencevisualization in seconds,proactive locating in minutes,and online precise marketing,service experience self-optimization and assurance as well as network-levelfault self-healing are achieved.With the popularization and development ofapplications such as industry intelligentization,videoaccess to the cloud,and unattended remote control,industry WANs require high bandwidth,high reliability,and small-granularity hard pipes.Industry WANs withSDH technologies as the core will be upgraded to next-1.To Home:FTTx Evolution,Building Whole-House Intelligence2.To Enterprise:Digital Upgrade of Enterprise WANs and Intranets,Achieving Integrated Sensing and CommunicationF5G Advanced Evolution Path17F5G Advanced Industry White Papergeneration OTN networks.The OTN OSU technologyuses 10M timeslot granularities and fjxed timeslotmultiplexing,while supporting 4000 connections per100G to achieve one-hop transmission of key servicedata with high security,high reliability,and low latency.Within enterprises,intranets generally carry enterpriseoffjce,video,surveillance,collection,and productionsystem interconnection services,and fjber to thedesktop(FTTD)and fjber to the machine(FTTM)arepromoted to create seamless optical network coverage.In this context,existing 10G PON networks can beupgraded to support 50G PON and FTTR Wi-Fi 7.Withthe help of network hard slicing and deterministicbearer technologies,a unifjed optical network can bebuilt to provide up to 10 Gbps of bandwidth,lowlatency within milliseconds,and zero interference forend access in enterprise intranets.Oriented to integrated sensing and communication,device ports,boards,modules,and management andcontrol functions are upgraded in the F5G Advancedphase to utilize the optical fjber sensing function for oiland gas pipeline inspection and perimeter securityprotection in key areas such as airports.In this way,thesensing positioning can achieve commercial-levelapplication capabilities,such as 99curacy andmeter-level precision.The advantage of integratedsensing and communication is that it helps industriesbuild intrinsic sensing capabilities and further expandapplications.In the premium private line phase,the core concept isto implement high-quality service bearing;provide99.999%network availability,low latency,low jitter,and visualization capabilities for private line customers;and support service provisioning within minutes.Premium private lines are not just used by high-endcustomers such as governments,as their reach nowextends to an increasing number of large,medium-sized,and small enterprises.The typical characteristicof premium private lines is E2E OTN networking,whichextends OTN coverage to end users within 500 m to 1km to achieve fast access.In addition,400G isdeployed on backbone networks,100G is widelydeployed on metro networks,and OXC is increasinglydeployed at the backbone core layer to enhance thelow latency capabilities of private line networks.Moreover,1520 ms three-level latency circles(1 mswithin city,5 ms from city to regional clusters,and 20ms between hubs)are constructed on private linenetworks.In the second phase,a premium computing network isbuilt.This is the initial phase of a computing powernetwork,and its core concept is collaboration.As thebearing base of premium computing power,an opticalnetwork is still an independent unit,meaning opticaland computing networks are orchestrated andscheduled separately.However,optical networks startcoordinating deployment and operation.Through theircollaborative service portal,resource scheduling isimplemented to meet user requirements for one-stopservice provisioning.On-demand computing networkprogramming fmexibly schedules ubiquitous computingpower resources,reduces application response latency,improves system processing effjciency,and achievesmutual promotion and win-win development of3.To Computing:Upgrade from Premium Private Lines to PremiumComputing Networks18F5G Advanced Industry White PaperTo evolve to F5G Advanced,the green opticaltransmission base needs the following upgrades:As more industries go digital,massive old services anddevices need to be incorporated and retired.More than2 million old SDH devices are running on the livenetwork around the world.With the gradual migrationof 2G and small-granularity private line services,SDHdevices need to be upgraded to optimize equipmentroom usage.As technologies such as MS-OTN andsmall-granularity OSU become mature,OTN willdefjnitely replace SDH devices.According to the case ofa city in China,after more than 200,000 SDH lineswere migrated to OTN,1.66 million kWh of electricitywas saved each year,which is equivalent to plantingmore than 70,000 trees each year.The electricity fee isreduced by nearly one million CNY.Further more,theSDH-to-OTN upgrade saves more than 90%ofequipment room resources.To cope with the sharp increase in energy consumptioncaused by rapid traffjc growth,operators need tocontinuously reduce the per-bit power consumption onthe bearer network.In addition,operators need tooptimize the network architecture and build all-opticaltarget networks by introducing OXC(replacing opticalcomponents with electrical ones)to reduce thenetwork-wide energy consumption.Backbone-layertraffjc evolves from electrical-layer grooming tooptical-layer grooming,enabling the network tofeature a 3D-mesh all-optical connection architecture.The discrete ROADM evolves to a unifjed OXC platformthat implements higher than 400G bandwidth all-optical 32-degree to 64-degree grooming and C120 toC120 L120,signifjcantly reducing the energyconsumption of backbone traffjc forwarding at theelectrical layer.OTN gradually extends from the metro core layer tometro aggregation layer and CO equipment rooms.With an optical-electrical convergence networkcomputing networks.The typical characteristics are asfollows:OTN implements on-demand coverage on theCO side in the premium private line phase,implementsfast service access to OTN sites within 300 m,realizesthe1520 ms latency circles,introduces the computingpower sensing function,and can quickly identify thecomputing power destination and directly access thecomputing power end through one hop to the cloudusing transmission networks.As for the rate increaseon the backbone side,backbone networks areupgraded to 400G and 800G to meet the large-capacity transmission requirements brought bycentralized computing power.On the management andcontrol side,the upgrade to an L4 autonomousnetwork is supported.The network-wide transmissioncapacity visualization,resource pooling,automaticprovisioning within seconds,and management andcontrol for ultra-large networks with millions of NEscomprehensively enable premium transmissionnetworks with guaranteed bandwidth and latency.4.Green All-Optical Base:Upgrade and Reconstruct Old Devices,Optimize the Architecture by Replacing Electrical Componentswith Optical Ones,and Extend WDM to Metro and AccessNetworks to Build All-Optical Bases19F5G Advanced Industry White Paperarchitecture,the levels of hierarchical electrical-layergrooming on metro networks are reduced.Driven byXR,8K,cloud computing,and cloud storage services,OTN optical transmission is further extended to serviceaccess sites and deployed in equipment rooms,outdoorcabinets,and pole sites.The distance between opticaltransmission devices and users can be less than 300 m,achieving all-optical access of premium services withinthe vicinity.Services are transmitted in one hop fromthe access layer to the core layer/DC at the opticallayer.An E2E all-optical network is deployed from thebackbone network,metro network,to access network.Optical and electrical resources are pooled andallocated on demand.In this way,the energy effjciencyof the entire network is improved by 10 times,makingnetworks greener.20F5G Advanced Industry White PaperAs East Digital West Computing project comes intofull play in China,it has become an imperative task tooptimize the interconnection network between the eastand west and the direct network between hub nodes.DC network construction is also in full swing outsideChina.Therefore,the transmission port rate oftransmission networks needs to be continuouslydoubled,and the single-fjber capacity needs to bedoubled over the same transmission distance tosupport large-capacity transmission on backbonenetworks.400G metro standards have been released to defjne200G at C80 and 400G at C40.In this context,400Glong-haul transmission standards were initiated at theend of 2021 and will be released in 2024.As for 800Gstandards,several standard organizations arediscussing client-side modules,and line-side andsystem standards will be put on the agenda as theindustry continues to develop.To meet this requirement,the optoelectronic industryneeds to prepare key technologies in the opticalmodule,spectrum,optical fjber,and systemcommissioning fjelds.The port rate of optical modules needs to beincreased from 200 Gbps to 400 Gbps and 800 Gbps,and the same or similar transmission capabilityneeds to be maintained.Therefore,the high-performance codec algorithm,FEC algorithm,andnon-linear compensation algorithm need to bestudied.In the 400G phase,OAs will be expanded from theoriginal C band to C L band to double the spectrum.In this case,the capacity can be doubled at the samespectral effjciency.When the spectral effjciencyreaches bottlenecks,the technology evolution pathof a wider spectrum can be further explored for the800G generation.New optical fjbers,including G.654E fjbers with alarge efgective area and low nonlinearity,multi-coreand few-mode optical fjbers,and hollow-core opticalfjbers can be researched and explored.Currently,large-scale ROADM/OXC networks havebeen deployed at the backbone layer around the world,and optical-layer grooming is being gradually extendedto the metro aggregation and access layers.Comparedwith traditional optical-layer planes,all-opticalnetworks implement one-hop transmission of servicesat the wavelength level,reducing complex electrical-optical conversions.Like direct trips between high-1.400 Gbps and 800 Gbps or Higher Ultra-broadband2.E2E Wavelength Switching OXC10 Key Technologies ofF5G Advanced21F5G Advanced Industry White Paperspeed railway stations,all-optical networks featurenon-blocking transmission with ultra-low latency.Inaddition,all-optical grooming functioning as ahigh-speed overpass effjciently grooms servicetraffjc,and signifjcantly improves the groomingeffjciency.As services develop in the future,all-opticalnetwork grooming and all-optical cross-connect unitswill also face various challenges.Specifjcally,backbonetransmission is evolving toward higher-rate ports,faster grooming,and wider spectrum,and metronetworks require more fmexible deployment,lowercosts,and simplifjed O&M,which have become thenew norms for dynamic development of the metrooptical layer.To address the technical challenges ofOXC,research needs to be conducted on a low-costsolution with few ports,64-degree or higher solutionwith many ports,and C L-band integrated WSS.3.Agile Service Provisioning Protocol4.Optical Service Unit(OSU)The agile service provisioning protocol providessimplifjed and effjcient control for all-optical servicecloudifjcation and computing.Service protocol:It controls service routes andseparates control and forwarding.Connection protocol:Control signaling is forwardedalong with the data channel.The forwardingperformance is decoupled from the number of pipes,and high-performance massive connections can bequickly established.In the 2B/2H cloud access service scenario,users needto access multiple clouds at one or more points.AnOTN edge node needs to detect the destinationaddresses or VLANs of service packets andautomatically map them to corresponding OSU/ODUkpipes.In addition,the OTN edge node detects serviceapplication types and traffjc,calculates the requiredbandwidth based on the application traffjc model,andautomatically triggers bandwidth adjustment for thecorresponding OSU pipe.OTN edge nodes use serviceprotocols to forward private network addresses ofenterprises through controllers,greatly reducing theoperation complexity of intermediate NEs on thenetwork.A fjber cut afgects thousands or even tens of thousandsof small-granularity OSU services,as well as therestoration performance.To mitigate this issue,theautomatically switched optical network(ASON)pathcomputation unit pre-computes a preset restorationpath and confjgures the preset resources on each nodeof the path.As such,when a fjber cut occurs,theconnection protocol is forwarded along with the datachannel to quickly activate bandwidth and achieve fastrestoration within 10 ms.OSU is a network technology used by OTN networks toevolve to large-scale and small-granularity private line22F5G Advanced Industry White Paper5.50G PONIn September 2021,ITU-T approved and released the50G PON standard.50G PON is widely recognized asthe mainstream next-generation PON technology inthe industry.The 50G PON system defjned in the ITU-Tbearer scenarios on metro networks.It uses smallertimeslot granularities(on the Mbps level),supportsmassive elastic hard pipe connections,and providesguaranteed,deterministic low latency as well ascomprehensive E2E OAM functions,thereby meetingthe high-quality requirements of private line bearerscenarios on metro networks.China and international standards organizations areactively researching and formulating OSU standards.For instance,China Communications StandardsAssociation(CCSA)has initiated OSU standards anddefjned technical solutions.Currently,the technicalsolutions have a stable defjnition.Meanwhile,ITU-Tinitiated the G.OSU standard and discussed scenariorequirements as well as technical directions.At the ITU-T SG15 plenary meeting in September 2022,ITU-Treached a consensus on the corresponding technicaldirections,laying a foundation for OSU standardformulation.The key OSU technologies and features are as follows:Massive connections:10,000 connections per 100Gare supported;therefore 100,000 connections can beachieved on a metro network.Flexible bandwidth adjustment:Hitless pipebandwidth adjustment is supported based on servicerequirements.Transparent transmission of clock signals:CBRservices can be transparently transmitted to meet theclock performance requirements of customerservices.Service awareness and mapping:Service awareness issupported to encapsulate and map service fmows toOSU pipes.Stable and low latency:The latency during electrical-layer pass-through processing of large-granularityservices is stable and within 10 s.Figure|OSU pipesODUOTUODUODUTimeslot granularity:1.25 GbpsBandwidth range:1.25 Gbps to 400 GbpsConnection scale:80 channels/100GTimeslot granularity:10 MbpsBandwidth range:10 Mbps to 100 GbpsConnection scale:4000 channels/100GTraditional ODUk pipesOTUOSUOSUOSUOSUOSUOSUOSUOSU pipes23F5G Advanced Industry White Paperstandard uses the point-to-multipoint architecture andtime division multiplexing(TDM)technology.The fjrstversion supports 50 Gbps in the downstream directionand 12.5 Gbps or 25 Gbps in the upstream direction,while the future enhanced version will support 50 Gbpsin both the upstream and downstream directions.Additionally,50G PON introduces the digital signalprocessor(DSP)to compensate for componentperformance,improving access bandwidth by fjve timescompared with 10G PON.50G PON also featureshigher service support capabilities.Specifjcally,itsupports technologies such as single-frame multi-burst,registration window elimination,Co-DBA(reducestransmission latency and jitter),and PON slicing(provides deterministic service quality).The release of the standard promotes the maturity ofthe 50G PON technology and industry,with predictionspointing to the commercial use of 50G PON by 2025.Intergenerational network upgrade and smoothevolution have always been the key concerns of theindustry.As network evolution is a gradual process,atechnical solution for the coexistence of 50G PON andPON over the same live optical distribution network(ODN)needs to be developed.In this regard,themulti-PON module(MPM)solution for a single PONport at the CO is a key research direction.To improve50G PON deployment effjciency,CO devices mustsupport the same optical power budget and portdensity as devices on the live network.That said,it isstill technically challenging to support an optical powerbudget greater than 29 dBm and high-density PONboards.As such,the research directions include newhigh-power lasers,high-sensitivity receiver chips,andlow-complexity DSP algorithms.6.Wi-Fi 7Wi-Fi 7(IEEE 802.11be)is an upgrade of Wi-Fi 6 andWi-Fi 6E.Draft 2.0 of Wi-Fi 7 will be fjnalized in 2022,and the standard will likely be released by the end of2024.Wi-Fi 7 can provide a peak data rate over 30Gbps,which is approximately three times faster thanthe peak data rate of Wi-Fi 6.In addition,Wi-Fi 7 isbackward compatible with previous-generation Wi-Fidevices.To meet the requirements of new applications in thefuture,Wi-Fi 7 features multiple enhancementscompared with Wi-Fi 6,for example,higher accessthroughput and lower access latency.To improve theaccess rate,Wi-Fi 7 uses 2.4 GHz,5 GHz,and 6 GHzspectrum resources and introduces multipletechnologies,such as the 320 MHz frequency band and4K quadrature amplitude modulation(QAM).Toreduce latency,Wi-Fi 7 adopts technologies such asmulti-link operations and multi-user resource unit(Multi-RU),while exploring the coordination andscheduling mechanism between multiple APs.Thatsaid,a lot of research is still needed to fully utilize thecapabilities of Wi-Fi 7.The Wi-Fi 7 320 MHz ultra-widespectrum is in the 6 GHz wireless frequency band;however,this frequency band may not be commerciallyavailable in some countries or regions.In this case,themillimeter band is a possible choice.Due to the use of6 GHz or higher frequency bands and new mechanismswith higher complexity,highly integrated,miniaturized,and low power consumption RF components,antennas,and supportive algorithms are the key researchdirections.24F5G Advanced Industry White Paper7.FTTR Networking with Centralized Management and ControlAs its name suggests,FTTR extends optical fjbers toevery room in a home or small enterprise to ensurepremium service experience in indoor environments.FTTR consists of three parts:master FTTR unit(MFU),slave FTTR units(SFUs),and indoor fjber network.AnMFU is deployed at the access point of a house orSME,and multiple SFUs are connected to the MFUusing optical fjbers based on service requirements andnetwork planning to provide wired and wireless gigabitnetwork coverage for each room.Figure|FTTR networking with centralized management and controlUnstable megabit backhaul over copperlines or Wi-FiComplex O&M due to independent devicesExperience Fluctuation due to competitionbetween multiple Wi-Fi APsOne-network for smart connection base(full-fjber connection,stable ultra-gigabit)Simplifjed O&M on one network(Centralizedmanagement on master FTTR unit)Stable experience on one network(centralcoordination of optical and Wi-Fi networks)331112233122Traditional Indoor NetworkingFTTR networking with centralizedmanagement and control25F5G Advanced Industry White PaperA key feature of FTTR is the indoor distributed fjbernetwork.Optical fjber networking features ultra-largebandwidth,stable anti-interference,and low energyconsumption.It supports one-ofg deployment andlong-term evolution,making it an ideal choice forindoor networking.To adapt to diverse deploymentscenarios and improve deployment and maintenanceeffjciency,technical innovations have been madearound elegant and tensile optical fjbers,power overfjber(PoF)cables,and onsite termination.Stable and premium experience is the key goal ofFTTR.To this end,FTTR needs to address major issuesof traditional indoor Wi-Fi networks,such as lack ofcontrol and stability.For this,it uses a centralized one-network management and control architecture incombination with multi-layer enhancements such asservice and connection collaboration,optical and Wi-Ficollaboration,and centralized Wi-Fi control.It alsoenables precise collaboration of Wi-Fi APs on the entirenetwork from multiple dimensions such asfrequency domain,time domain,and space domain to provide consistent and stable connection experienceand zero-packet-loss roaming on the entire network.Continuous exploration and research are required tobalance service experience requirements with deviceresource limitations,thereby obtaining the optimaloptical and Wi-Fi collaboration mechanism andcentralized Wi-Fi management and control algorithm.The fundamental idea of FTTR is that only onenetwork is needed for a whole house and O&M issimplifjed.One FTTR network is simplifjed into onemanagement point to support one-click serviceprovisioning and intelligent O&M.The FTTR one-network O&M framework and management modelneed to be jointly studied and defjned by the industry.For one thing,premium FTTR connections are thecornerstone of smart applications for homes and SMEs.For another,widely distributed optical fjbers anddevices have sensing and computing capabilities,making them key data generation sources and dataprocessing resources.Indeed,FTTR has great potentialto provide smart services in the future to increasenetwork values.To ensure experience and guarantee SLAs,E2E slicing isimplemented on the Wi-Fi air interface,ONU Ethernetport,and OLT network-side egress.Slices are createddynamically,and resources are allocated on demandbased on committed,visible,and manageable SLArequirements to enable integrated service bearing overa single fjber.In addition,technologies such ashome and enterprise Wi-Fi network optimization andoptical access network time and frequencymultiplexing are used to meet millisecond-level andmicrosecond-level deterministic low latencyrequirements.E2E slicing involves the egress of the ONU and OLT onthe access side.Slices of each device on the networkare properly combined to implement dynamic slicecreation and on-demand resource scheduling.E2Eindustry private network slicing enables a multi-purpose network to provide difgerentiated bearerservices for difgerent industry users.8.PON Multi-Dimensional Slicing26F5G Advanced Industry White PaperThere are three types of slices on a PON accessnetwork:management slices,resource slices,andresource slices.A management slice is a slice ofmanagement resources,used for precise access control.In multi-tenant scenarios,each tenant can customizeviews based on service requirements,and visualize andmanage only their own network resources.Resourceslicing is the basis of access network slicing.ONUs andEthernet ports must be allocated to a dedicatednetwork,which each must have an independentforwarding domain.Traffjc slicing is mainly used toclassify applications to implement deterministic anddifgerentiated SLAs.Latency and jitter of Wi-Fi interfaces are keybottlenecks in home/campus offjce scenarios.Wi-Fi 7uses the OFDMA technology,multi-user resourceallocation,and multi-link collaboration algorithm toimplement integrated slicing by multiplexing airinterface time and frequency.This efgectively reducesWi-Fi air interface confmicts,reduces service forwardinglatency and jitter,and achieves deterministicmillisecond-level latency,meeting requirements ofservices such as XR Pro.The TDM forwarding plane is added to the opticalaccess network,forming a dual-plane forwardingarchitecture.The jitter compensation mechanism,single-frame multi-burst technology,independentregistration channel technology,and collaborative DBAtechnology are introduced to implement microsecond-level low-latency forwarding and service jitter at theservice forwarding layer,helping industries such asindustrial remote control and precision manufacturinggo intelligent.Figure|PON multi-dimensional slicingPremium homebroadbandPremiumenterprise servicesPremium 2B solutionsOLTIP/OTNPON slicingController27F5G Advanced Industry White Paper9.Native Intelligence for Autonomous NetworksThe Autonomous Networks Project(ANP)of theTelecom Management Forum(TM Forum)defjned theoverall architecture and classifjcation standards ofautonomous networks,while the EuropeanTelecommunication Standards Institute(ETSI)researched and standardized how to implement E2Eautomatic management of networks and services,aswell as how to apply AI technologies in autonomousnetworks from the perspective of resource facingservices(RFSs).Currently,related projects and workinggroups of the TM Forum,ETSI,and ChinaCommunications Standards Association(CCSA),andother related standards organizations have establisheda collaborative organization to jointly research andstandardize autonomous networks,in addition topromoting the implementation of standards forautonomous network technology in difgerent fjeldssuch as optical networks.The TM Forum has launched the Autonomous NetworkWhite Paper,which defjnes the system architecture ofautonomous networks,as shown in the followingfjgure.Autonomous domain YResource closed loopResource operationsPEPEResource closed loopAutonomous domain XPersonalizedservicesAutomatedO&MReal-timeexperienceOperations EffjciencySmartCitySmarthomeSmartmanufacturingBusiness GrowthBusiness operationsServices operationsBusiness intentResource intentResource intentUser closed-loopService closed loopService intentBusiness closed loop1234UsersCommercializationProductionFigure|PON multi-dimensional slicingResource operationsVEVE28F5G Advanced Industry White PaperKey technologies that support optical autonomousnetworks mainly cover the following fjve technicaldirections:1)Visualized transmission capacityAllocate integrated weights to multiple factors such asthe network usage and latency based on real-timedetection of the computing power-network status tocalculate paths that not only meet SLA requirements ofdifgerent services and but also evenly use networkresources.Oriented to the dynamic trend of computingpower-network services,introduce AI technologies toautomatically learn the distribution characteristics,duration modes,and growth trends of computingpower-network services,to optimize the multi-factorpath computation capability.Oriented to integratedcomputing power-network scheduling,concurrentlycalculate routes from users to all optional computingnodes for the upper-layer system to intelligentlydetermine a computing power-network scheme basedon network transmission capability measurement data.2)Automatic service provisioning in secondsIntegrate the automatic optical service provisioningcapabilities of device vendors network managementand control systems through automatic interfacesbetween BSS/OSS subsystems,to support application-driven automatic service provisioning in seconds.Enable the system to automatically set the servicesource and sink addresses,port types of user devices,as well as the bandwidth,protection,and latencyrequirements,automatically calculate paths that meetlatency and protection requirements and allocateresources,create server paths for services or reuseexisting server paths,and create E2E connections.Inthis way,manual provisioning in days or weeks isreplaced with automatic provisioning in seconds,thereby improving service provisioning.3)Ultra-large network management and controlDeploy a two-level architecture consisting of the superand domain controllers.The domain controller is usedfor single-domain service scheduling;the supercontroller for cross-domain service scheduling.The twocontrollers collaborate to implement fmexiblescheduling of a large network with millions of NEs.4)Personalized servicesDeploy intelligent OLTs to identify more than 70 OSSlabels in four categories for online users,such as poor-QoE,experience status,home networking,and poor-QoE bottlenecks.In this way,BSS systems canimplement personalized services more accurately overgigabit/FTTR networks,changing from potentialcustomer identifjcation in weeks to real-timerecommendation.5)Real-time experience assuranceProvide VIP users with dedicated assurance capabilitiessuch as E2E dynamic topology visualization,faultdiagnosis,and experience optimization,to accuratelysense and locate possible suspension,disconnection,and slow response issues.Complaint-triggeredresponse and locating are replaced with routineassurance,assuring user experiences.29F5G Advanced Industry White Paper Key optical cable digitalization technologiesIt is diffjcult for NEs in an optical communicationsystem to monitor the health and status of dumbresources such as optical cable networks.Operatorshave long lacked efgective digital managementmethods for port occupation status and fjber patchcord connections in optical distribution frames(ODFs)in equipment rooms and outdoor fjber distributionterminals(FDTs).As advanced technologies such assensors,AI,and big data become popular,digitalinformation collection and processing tools developedfor various handheld terminals,intelligent deviceboards with optical fjber quality monitoring and opticalcable status awareness capabilities,and advanced andeffjcient computing and machine vision algorithms cannow be used to provide operators and other opticalcable network owners with real-time and accuratedigital recording,audit,and synchronization of massivedumb resources such as passive facilities,optical fjbers,and optical cables.At the same time,for the backboneand distribution optical cable sections of the localnetwork of an operator with the highest proportion ofthe total mileage of optical cables,based on theinnovative breakthroughs in bottom-layeroptoelectronic components and basic materials,someequipment vendors have made optical route resourcesof a gigabit optical network visible and manageablefrom end to end,setting a clear path for O&Mdevelopment in the access section of an optical cablenetwork in the future.Key optical fjber sensing technologiesOptical fjber sensing uses the physical properties oflight as it travels along a fjber to detect changes invibration,temperature,strain,and other parameters.This technology utilizes the fjber itself as the sensor tocreate thousands of continuous sensor points along thefjber,and so is also called distributed optical fjbersensing.The principle is to use a standard or specifjcfjber to implement measurement using Raman,Rayleigh,and Brillouin distributed optical fjber sensortechniques.Unlike traditional electromechanical and electronicsensors,optical fjber sensors feature anti-electromagnetic interference,corrosion resistance,easyintegration,intrinsic safety,long distance,and highprecision.Thanks to these advantages,optical fjbersensing has been widely used in large-scaleengineering projects.It also has a large number ofmature application cases in various industries,such asoil and gas pipeline intrusion detection,perimeterdetection for large campuses and rail transits,securitydetection for large civil engineering structures such asbridges and dams,and security detection for railwayssuch as tunnels.Application scenarios of optical fjber sensing arefurther enriched thanks to the continuous performanceimprovement of narrow-linewidth light sources,themature application of new technologies such as themulti-carrier technology,pulse code,and specialsensing fjbers,as well as automatic event identifjcationusing the big data generated during AI-poweredoptical fjber sensing processing.These trends alsocontinuously improve the KPIs including the coveragedistance and sensing precision of optical fjber sensingand event identifjcation accuracy.Key Wi-Fi sensing technologiesRadio waves are the best sensors.Leveraging thesensing function of Wi-Fi 7,radio waves have thebenefjts of low cost,continuity,and non-infringementon user privacy,in addition to supporting valuable10.Harmonized/Integrated Communication and Sensing30F5G Advanced Industry White Paperapplications such as indoor positioning,motiondetection,and breathing frequency detection.Wi-Fisensing technologies usually use the change patternsof signal arrival time(for example,IEEE 802.11az)andchannel state information(for example,IEEE 802.11bf)of a signal propagation path to sense existence ormotion information of a person or an object in acoverage area.Afgected by the operating environment,Wi-Fi signalsmay sufger from interference,fading,and multipathefgects during transmission,which limits the precisionand accuracy of Wi-Fi sensing and identifjcation.Muchresearch in the industry has focused on continuouslyimproving the precision and accuracy of Wi-Fi sensingand identifjcation based on the characteristics of Wi-Fisignal transmission.To improve Wi-Fi sensing precision,signal waveforms and sequences that match refjnedpersonal features can be designed for signals to refmectslight changes in personal features.Alternatively,themultiple-input multiple-output(MIMO)antennatechnology can be used to obtain more multi-dimensional radio channel information.In addition,using millimeter waves that have shorter wavelengthsis also a potential direction.To improve Wi-Fi sensingaccuracy,environment anti-interference technologiescan be enhanced to prevent statistical features frombeing overwhelmed by interference.Alternatively,technologies for cross-AP synchronization andcoordination can be explored to obtain more accurateand richer information over the entire network.31F5G Advanced Industry White PaperOptical communication is always in a state ofcontinuous innovation and development.In the fjrstphase,F5G standards have been put into commercialuse.But F5G technologies are still developing.At themeeting on September 16,2022,the ETSI offjciallynamed the next phase:F5G Advanced.It defjnes newgoals and capabilities for the future development ofF5G.With the wide application of F5G in variousindustries,new opportunities and service requirementsare generated for homes,enterprises,and industries.Evolution to F5G Advanced is required to enrichapplications,promote innovation,and build asustainable fjxed network industry.Lets join hands tostride into F5G Advanced and usher in a new era offjber to everywhere.Summary and Prospects32F5G Advanced Industry White PaperAcronyms and AbbreviationsAIartifjcial intelligenceDCIData Center InterconnectETSIEuropean Telecommunications Standards InstituteF5Gthe Fifth-Generation Fixed NetworkFlexOFlexible Optical Transport NetworkFTTHfjber to the homeFTTRfjber to the roomFTTOfjber to the offjceGPONgigabit passive optical networkMPM PONMulti-Processing Module passive optical networkNEENetworknetwork energy effjciency indexHPChigh-performance computingICTinformation and communications technologyoDSPoptical digital signal processingOTOperation TechnologyOLToptical line terminationODNoptical distribution networkONUoptical network unitONToptical network terminalOSUoptical service unitOSUfmexoptical service unit fmexROADMreconfjgurable optical add/drop multiplexerOXCoptical cross-connectOSSoperations support systemPLCproduction line controlSLAService Level AgreementTM Forumtelecommunication management forumVRvirtual realityWIWork ItemWBBAWorld Broadband AssociationF5G Advanced产业白皮书中国联合网络通信集团有限公司中国信息通信研究院中国移动通信集团有限公司Bharti北京邮电大学中国电子工程设计院有限公司工业和信息化部电子第五研究所中南大学CTTCe&烽火通信科技股份有限公司Globe Telecom华中科技大学华为技术有限公司机械工业仪器仪表综合技术经济研究所Orange绿色全光网络技术委员会Post LuxembourgPT Telkom企帅数字科技University of PatrasUnion SHENZHEN HospitalVTAL中兴通讯股份有限公司唐雄燕、王光全、王泽林、张贺、邵岩、满祥锟、孙越、沈世奎、董姗敖立、刘谦李晗、张德朝、李俊玮、李允博Praveen Maheshwari张杰、赵永利、张治国张旭胡妍飞黎胤Raul MuozMohamed al Marzooqi陈松涛、彭绍勇、李洪亮、隋玉洲Emmanuel Lazaro R.Estrada程孟凡、杨奇王景吉、龚倩、陆小华、孙春、罗贤龙刘丹Philippe Chanclou张锐利Olivier FerveurNA何啟昌、高显明Ioannis TomkosSuisong ZhuEvandro Bender罗来荣、刘传珠、张海军、李明生、王孟贡献者F5G发展回顾F5G Advanced产业演进四大驱动力F5G回顾与F5G Advanced演进F5G Advanced产业目标与特征联家:打造智家DICT新生活联企:推动IT和OT融合,FTTO/FTTM赋能企业数智化联算:大带宽、确定性、可调度运力,实现品质入算绿色全光底座:助力承载网络能效10倍提升F5G Advanced应用场景探讨F5G Advanced演进路径04152223080613400Gbps和800Gbps 超宽技术端到端刱长交换OXC敏捷发放业务协议光业务单元OSU50G PONWi-Fi 7集中管控FTTR组网PON多维切片智能原生,自智网络通感一体化F5G Advanced十大关键技术总结与展望缩略语CONTENTS目录03F5G Advanced 产业白皮书序言2020年2月欧洲电信标准化协会(ETSI)正式发布F5G提出了“光联万物”产业愿景。经过2年多发展F5G从标准组织到行业应用都实现了快速的发展:会员数近100家、提交了1000 篇的文稿、成立了13个WI进行技术的研究等极大的带动了F5G在行业应用的标准化工作。2021年底WBBA的成立开启了F5G从标准走向产业新开端,2022年9月ETSI发布了F5G Advanced标准白皮书推动F5G产业持续向前演进。F5G网络正在全球加速推进,从产业发展驱动角度看,F5G在促进家庭信息消费,赋能社会民生及行业融合应用方面产生了重要的支撑作用。当前全球的主要经济体都已经或正在推出F5G千兆宽带战略及相关政策,F5G的商用部署及行业融合应用也呈现出规模化态势。四大动能驱动产业持续演进,进入F5G Advanced时代:光纤网络联通现实世界向虚拟世界,需要网络支持业务从1G到10G演进 从电信级向工业级演进,深化行业的数字化能力 从通信向感知演进:挖掘光纤网络的无限潜能 光纤网络走向更绿色的网络架构,实现10倍能效提升下一个十年,千兆接入全面普及、万兆接入规模商用,企业云化、数字化转型持续深化,万物互联的智能时代正加速到来,固定网络面临前所未有的历史机遇。本白皮书立足新场景新应用,对架构演进及网络新能力进行了探索,重点讨论了家庭、企业、算网及绿色光网络等关键需求场景,定义了F5G Advanced的产业目标、核心特征、关键网络指标、演进路径及关键技术能力,旨在为F5GAdvanced发展提供可参考的场景需求和技术走向,为网络演进探索新的方向,促进产业形成共识,共同迈向F5GAdvanced新时代。04F5G Advanced 产业白皮书F5G回顾与F5G Advanced演进2020年2月,欧洲电信标准化协会(ETSI)正式发布F5G,提出了“光联万物”产业愿景,以宽带接入10GPON FTTR、Wi-Fi 6、光传送单刱200G OXC为核心技术,首次定义了固网代际。其内涵是在光网的接入侧提升光纤化宽带化水平实现千兆速率,承载侧利用全光底座实现千行百业的品质承载。F5G固定代际标准及光联万物的愿景一经提出迅速成为产业界热议的焦点,ETSI的标准2年多从标准组织到行业应用都实现了快速的发展,会员数近100家,提交了1000 篇的文稿,成立了13个WI进行技术的研究,召开了60 场次的周边组织研讨,极大的带动了F5G在行业应用的标准化工作,2021年底WBBA的成立开启了F5G从标准走向产业新开端。同时光联万物,F5G服务千行百业,构筑家庭数字化、企业数字化以及公共服务和社会治理数字化的联接底座带来的经济效益也逐步成为全球产业共识。中国社会科学院做的一份研究报告显示,2020-2025年间F5G平均每年能拉动中国GDP增长0.3个百分点。F5G是数字经济的基石,已成为国家ICT基础设施发展的核心战略。在欧洲,欧盟发布“2030数字十年计划Europes DigitalDecade”和“VHCN指导方针”,从政策、资金、监管等方面牵引欧洲各国千兆光纤网络建设。在中国,“十四五规划”明确提出全面部署千兆光纤网络,加快千兆城市建设和200G/400G升级,并制定3年行动计划确保目标达成。此外,有20 国家发布光纤宽带顶层规划,如泰国“Giga Thailand”、埃及“Decent Life”、摩洛哥“NBN 2025”、尼日利亚“NNBP 2025”、科特迪瓦“National Broadband Implement Plan”,加快了光纤宽带部署。印度“Digital India”,围绕“高速宽带、移动泛在接入”等9个领域打造数字社会和知识经济,推动印度社会的全面数字化转型。在生活领域,一方面F5G以其大带宽、低时延、泛联接的特征满足对网络和信息服务的新需求;另一方面,F5G孵化新产品、新应用和新业态,加快供给与需求的匹配度,不断满足消费者日益增长的多样化信息产品需求。在生产领域,光纤从家庭走向园区,走向工厂和机器,光进铜退正成为新的建网趋势。FTTO全光园区已在超 过15,000家教育、医疗、金融机构部署。FTTM全光工业网已在超过百家煤矿井下安全生产、港口超远控、交通全 光路口创新应用。F5G以绿色环保、极简架构、大带宽、确定性低时延、安全可靠等特性,助力千行百业数字化转型,极大地释放了传统行业的生产力。从全球运营商的统计数据来看,从2020年-2021年,FTTH新增用户 1亿,千兆宽带用户数超7千万,FTTR部署超过80万套,FTTO/FTTM 进企业超过2万家,F5G的产业生态已经全面建立。1.F5G发展回顾与前几代通信网络不同,F5G千兆光网被认为是新型信息基础设施的重要组成,构成了经济社会发展的信息大动脉,在赋能数字经济发展,助力千行百业数字化转型中具有重要支撑作用。欧盟提出2030数字罗盘(DigitalCompass)计划,明确制定了千兆全光战略,中国也在千兆光网赋能行业应用方面启动“追光计划-工业领航行动”将 持续深化“千兆光网 行业融合应用”作为当前的重要目标。从产业演进的角度看,F5G需要应对如下挑战:超高清沉浸式体验,需要更大带宽更低时延的网络:随着技术的发展演进,元宇宙应用的兴起,极大地促进了VR/AR/XR、光场显示等高清视频产业的发展。根据华为研究以及第三方咨询报告,2030年将有超10亿用户通过XR体验“身临其境”的全新虚拟世界,并实现和物理世界的交互。以远程办公为代表的多方视频通话、虚拟会议等将成为常态,构建沉浸式体验的虚拟世界,实现自然的交互体验,需要1Gbps10Gbps带宽、20ms5ms的时延,同时为保障家庭、企业多用户并发体验,需要带宽10倍提升,对现有F5G千兆网络能力提出了新的挑战。工业制造、能源、交通等行业数字化,需要网络进一步提升实时性和可靠性:F5G推动光网络进入工业领域,随着产业数字化、智能化升级加速,机器视觉等超高清视频回传、远程运动控 制等应用规模发展,需要20us时延、20ns抖动、零丢包和99.9999%高可靠联接。而当前的串行总线时延 100us,且时延、抖动逐站累加,难以满足要求,需要新型现场 总线满足工业控制的苛刻要求。能源、交通生产网对网络的安全可靠、低时延有很高要求,随着高清视频回传等大带宽业务需求的发展,需要提供每个站点GE带宽、1ms低时延、99.999%高可靠的硬管道联接,承载并使能OT的自动化、智能化升级,加速 行业生产网络的数字化转型。无处不在的光缆网,需要数字化管理和增加环境感知能力:随着F5G Fiber to Everywhere的深化部署,光纤进一步向末端延伸,连接数增加10倍,光纤部署里程数增加 20%。一方面,运营商拥有海量的光缆哑资源,管理维护变 得越来越复杂,需要通过数字化技术手段,实现光缆位置的 精准定位、光缆故障位置的准确识别等数字化、可视化管 理。另一方面,F5G在行业的规模部署,推动企业场景光缆 无处不在。光纤不仅可以满足企业通信的功能,还具有感知 振动、温度、应力等参数的特性,可以通过光纤对外部环境进行精准感知,在油气管线在线巡检等场景发挥巨大作用。企业数字化、云化加速,需要网络架构极简、绿色低碳:随着企业云化和数字化转型加速,业务集中云端部署,流量主要是从终端汇聚到数据中心,同时8K/XR等大带 宽应用驱动未来10年网络的流量复合增长率26%以上,要求网络带宽10倍以上提升。而现有多级逐跳转发的网络架 构,在时延、功耗等方面均面临挑战,需要一跳直达、全光调度、极简扁平化架构的绿色全光网,实现网络能效10 倍提升,更好满足企业数字化发展的需要。2.F5G Advanced产业演进四大驱动力05F5G Advanced 产业白皮书06F5G Advanced 产业白皮书F5G Advanced产业目标与特征F5G Advanced以光纤、OTN站点、Wi-Fi频谱为核心,与家庭、行业应用、光缆及管网感知深度融合,通过提升传送和接入的全光底座能力服务于万物互联。其目标是实现像水电一样的“无处不在的全光基础设施”,构建“Fiber to Everywhere、OTN to EverySite、通感一体及全光自智网络“的产业目标。具体内涵包括:接入侧带宽持续由1Gbps向10Gbps演进;通过Fiber to Everywhere推进光纤化部署,打造宽带数字化底座支撑业务从现实世界走向虚拟世界。OTN向楼宇、小区、站点、DC延伸覆盖并能够一跳直达入云,实现OTN to Every Site的覆盖,通过构建超低时延、绿色高能效品质承载网络实现各种场景的差异化承载,助力千行百业数字化,全面支撑向数字世界的演进。对无处不在的光缆网,进行数字化管理和环境感知,实现通信与感知的融合,释放光纤无限潜能,助力各种管网资源的数字化,从人工巡检演进为无人巡检,实现社会资源与通信资源的综合治理。全光自智网络助力网络从自动化向智能化演进,加速OTN to DCOTN to CO/OLTOTN toBuilding中心云/边缘云CO/OLT站点商业楼宇Fiber to Everywhere,无处不在的光联接全光自智网络(L4)OTN to EverySite,无站不达的光传送FTTH,FTTR,FTTO,FTTMOTN to DC,OTN to CO/OLT,OTN to Building10Gbps Everywheres时延6个9可靠性ms级低时延圈FTTH,FTTRFTTR-2B工业光网家庭企业工业通感一体智慧家庭业务上云工业精益制造全光一跳入云FMC综合承载中小企业高品质入云云XR沉浸式体验多网合一智能矿山绿色节能千兆光网 5G双千兆确定性品质联接图|F5G Advanced 产业目标差异化产品运营,通过L4自智网络网络的升级,实现传送和接入的全光底座的智能智慧化管理,实现家宽体验自优化,专线、品质算力极速联接提质。围绕产业目标,F5G Advanced阶段与F5G最大的变化是在原有特征持续扩展的基础上新增了绿色敏捷全光网、面向工业制造的实时韧性联接、通感一体三大特征,具体表现为:增强宽带(eFBB):从千兆接入迈向万兆家庭/万兆园区/百T网络,实现1 Gbps-10 GbpsEverywhere(线路带宽翻番 200G/400G-400G/800G)绿色敏捷全光网(GAO):OTN to Every Site,打造一跳直达、10倍能效提升的绿色敏捷的品质全光网 全光联接(FFC):打造智慧家庭/企家协同/全光园区数字化底座,提升高品质联接数 低时延高可靠工业级联接(RRL):6个9超高可靠、s级确定性低时延全光生产网,助力千行百业数智化升级.体验可保障(GRE):家宽从可视定位到体验自优化,专线/算网极速智能联接提质 通感一体化(OSV):从通信到感知,释放光纤网络无限潜能低时延高可靠工业级联接绿色敏捷全光网RRLGAOeFBB增强宽带FFC全光联接GRE体验可保障OSV通感一体化/F5GAdvancedF5GeFBB增强宽带FFC全光联接GRE体验可保障2020年,F5G时代2022年,F5G Advanced时代图|从F5G演进到F5G Advanced,产业特征持续扩展07F5G Advanced 产业白皮书08F5G Advanced 产业白皮书1.1 沉浸式XR 全屋智能,持续提升家庭生活品质随着终端成熟度提升及千兆网络规模部署,家庭业务向多屏化、多元化和智能化演进,打造智慧新生活。一方面业务从4K-8K-XR沉浸式体验不断提升,根据第三方咨询报告,未来5年XR产业迎来高速发展,2030年将有超10亿用户通过XR体验“身临其境”的全新虚拟世界,并实现和物理世界的交互。如工作场景下人们戴上1个头盔设备,在家里即可以和客户、同事创建虚拟“面对面”的真实交互的工作体验。学习场景下将以一种全新的方式呈现,教育资源线上化可最大化资源共享,学生也可通过AR眼镜近距离观察化学反应变化等。生活场景下XR带来更加丰富多彩的生活体验,如人们可以随时随地和朋友举办虚拟派对,和远在他乡的亲人进行亲切交谈等。另一方面终端连接数量将10倍以上增长,智能家居从单终端走向全屋智能,各类终端互联互通并结合场景式交互,打造亲切自然的居家体验,构建懂你的空间。如疲劳一天回到家时,喜欢的灯光、音乐、香氛和电视节目自动开启;智能床、智能枕、卧室的照明、音效等系统的协同,为人体打造一个睡眠辅助系统,根据个体的生理健康特征和睡眠习惯,自动匹配床垫和枕头的软硬度;营造助眠的光环境,刺激褪黑素分泌等。通过3D光感知精准感知老人姿态等,并和摄像头等联动,既保护隐私,又无需佩戴可穿戴设备,科技赋能智慧养老。沉浸式XR和全屋智能等业务发展对网络带宽、时延等提出更高要求,F5G Advanced阶段通过50GPON和FTTR Wi-Fi 7等新能力实现110Gbps全屋无缝覆盖、ms级时延和无缝漫游等运营级的Wi-Fi体验保障等,提供随时随地工作学习、无眩晕感的身临其境交互、隐私无忧的健康看护和亲切自然的居家体验等智慧新生活品质,打造家庭DICT新服务和新业态,开启万亿新空间。1.2 家庭从娱乐中心到多元生活中心,提供企家协同差异化服务社会发展和疫情等多种惆素惇惈,家庭从惉乐中心向多元化生活中心演进,远程教育、远程办公、全民直播等成为家庭场景下的重要组成。如在疫情期间居家办公成为一种新模式,办公场景边界模糊,远程办公要能达到企业办公室体验诉求,包括超高清视频会议不卡顿,文件传输和远程访问毫秒级无感知,物理层安全权限隔离控制和数据不出园区等。家庭多元化生活中心的发展对网络提出带宽时延可保障、加密隔离等类专线的品质要求,F5G Advanced阶段通过E2E差异化承载管道、高价值业务一跳入云、OTN政企专网隔离等新能力,使能家宽从传统的互联网尽力服务向SLA品质可保障的家宽类专线演进,提供企家协同、直播宽带等差异化服务,2H流量变2B流量,进一步释放宽带网络价值。1.3 品质宽带自智网络,使能业务从带宽经营向体验经营转型伴随千兆光宽的高速发展和用户规模增长,家庭业务的多样化和个性化诉求激增,对光纤宽带网络的服务运营能力提出更高要求,宽带网络引入 AI、大数据等技术,使能运营商从带宽经营向体验经营转型,提升用户粘性和发展个性化新业务。TM Forum的自智网络白皮书定义了L0-L5自智网络分级标准,近期多个运营商发布白皮书将2025年达成自智网络L4等级作为数字化转型目标,实现感知、分析、决策、执行的高度自动化,实现开通Zero Wait、维护Zero Touch、业务Zero Trouble的高品质个性化服务。1.联家:打造智家DICT新生活F5G Advanced应用场景探讨F5G Advanced阶段通过引入大数据和人工智能等新技术构建家宽业务E2E数字化运营运维能力,实现宽带体验从感知、分析、决策、执行的全生命周期高度自动化&智能化分级经营。一方面实现质差实时可视和故障自愈,推进家宽从投诉驱动的被动式排障运维演进到体验驱动的主动式调优保障,从线下传统营销到线上精准营销。另一方面针对高价值业务体验自动优化,通过提供不同保障等级的金银铜管道业务和动态分流入云,实现终端业务体验自优化,助力家宽不断提升体验和服务品质,持续提升用户满意度并加速新业务发展。2.1 沉浸式XR应用:带来办公、学习和远程医疗全新体验企业数字化加速发展,在办公、学校、医院等场景下XR广泛应用、数据上云和跨地域智能协作等逐步成主流。如医院医疗场景,疫情常态化、人口老龄化、公平医疗、分级诊疗,驱动医院广泛应用体征检测等智能终端,3D CT等医疗检查数据实时上云,医生通过360 度高清视频远程观察患者相关部位;XR广泛应用在智慧教室,实现智慧教学、远程课堂、电子书包等多场景沉浸式教学场景;在企业办公场景,数字化办公一直追求的是用户存在感和空间感,让互动方式更自然、沟通效率更高效,沉浸式XR办公可帮助人们体验到共处一室的空间感。开会时还可以“面对面”互动,能从不同角度观察聊天对象并进行肢体或眼神交流,打破屏幕阻隔感。企业8K直播、XR办公和XR智慧教室等业务对网络提出更高的要求。F5G Advanced阶段通过50GPON和FTTR Wi-Fi 7等新能力实现110Gbps全屋无缝覆盖、ms级确定性时延等,带来100G设计文件分钟级上传下载,三维CT惇像浏览秒级可视,给企业和行业客户带来极致的网络体验。2.2 工业光网:打造工业互联网光底座随着社会经济的快速发展,行业数字化转型进一步加速。工业制造逐步向数字化、智能化、无人化和柔性化方向发展,3D机器视觉质检、云化PLC以及集中控制类应用在未来的工业制造中逐步成为主流。伴随着3D质检、云化PLC及远程操控等应用在工业互联网行业的应用,对网络可靠性、带宽及时延提出了更高的要求,110Gbps的上行能力,6个9的可靠性要求,s级的确定性时延及产线分钟级灵活扩展能力,匹配智能应用对网络的需求。F5G Advanced演进阶段工业光网一方面发挥光纤绿色节能、稳定抗干扰、大带宽、灵活柔性扩容、长距覆盖等特点,另一方面增强确定性s级时延和抖动,E2E硬管道隔离等新能力实现工业级品质网络保障,促进港口无人化、工厂柔性智能产线及3D AI质检等业务发展,打造工业互联网光底座,进一步释放千行百业生产力。2.3 行业数智化转型:向绿色、高可靠和确定性演进随着行业数智化转型的逐步深入,传统的能源交通行业向着云化、视频化、物联化方向发展。以电力为例,清洁低碳是全球的趋势,光伏/风电等绿色新能源、数字化变电站的物联应用等新场景,电力公司需要一张面向新型电力系统网络,包括三方面能力:一、配网侧各种新能源设备的并网,包括屋顶光伏,充电桩,会导致配网的调控复杂度提高,需要更精准的采集和调控通信能力,电力配网需从二遥向三遥升级,以进一步缩短年均停电时长。二、数字化变电站加速建设,一个变电站布放几百个各类的传感器,一个数字换流站会布放几千个各类传感器,各传感器授时尤其是雷击要求达到s量级。三、分布式光伏并网 配网终端激增,智能终端和视频接入不惇惈生产区业务稳定性,需确定性低时延5ms和硬隔离能力。惆此未来电力通信网络相较传统网络需要更多的连接数,更可靠的通信质量,更低的确定性ms级时延,确保采集与调控业务的100%安全可靠,才能满足新型电力系统“削峰填谷”的需求。F5G Advanced阶段,基于硬切片的OSU技术应运而生,不光具备OTN大带宽优势,同时承载小带宽业务,带宽0浪费,时延有保障,是传统2.联企:推动IT和OT融合,FTTO/FTTM赋能企业数智化09F5G Advanced 产业白皮书10F5G Advanced 产业白皮书网络升级演进的最佳技术路径,实现E2E硬管道为终端设备提供“微专线”的通信质量保障。其它行业如煤矿、公路、铁路等长距传输网络场景,通过光纤将各个孤立的信息点位数据串接在一起,实现数据的汇集与共享,催进行业数字化应用发展。2.4 通感一体:释放光纤网络无限潜能随着海量的光纤资源部署,光纤作为哑资源,不能准确收集光缆网资源信息光路故障难以定障和定界等问题成为世界难题。F5G Advanced阶段引入光路智能数字化技术,实现ODN拓扑和光功率全程可视和米级精准诊断,为运营商打造一张实时可视、精准感知、高效运维的数字化光缆网极大提升运维效率。同时,光纤不仅可以进行信号传递,同时具备良好的温度、振动、应力等感知功能,各行各业逐步认识到光学传感绿色、高效、本质安全等独特优势,主动将光传感技术应用于生产活动中。如传统的油气和轨道交通等领域需靠人工进行长距离的巡查存在耗时耗力,而且巡查的效果和实时性不佳的情况,油气管道巡线费用高达2万¥/km/年。F5G Advanced阶段将光纤感知功能应用于油气等管道检测、机场等周界安防等领域,并结合智能算法可极大改善传统人工巡检等模式效率达到99%准确率和米级精度等商业级应用水准,真正实现全时段无人化巡检,入侵事件提前检测预警,有效减少管道事故,大幅提升行业效率。面向未来光谱检测技术还能实现微元素、气体浓度的测量。如将光谱气体感知功能应用于城市地下管廊可燃易爆气体检测、炼化厂有害气体泄露检测,不仅能提前预警,还能够实时掌握有毒有害气体空间场分布状态,秒级确定泄漏源,辅助救援人员制定救援措施;依托第四代原子光谱LIBS,可替代传统X射线荧光和伽马射线法,使能冶金和矿业实现实时、无辐射、高准确率的元素含量检测。3.1 从算间互联到用户入算,需要大带宽、确定性、可调度、快速灵活接入的品质运力保障算力枢纽互联需要大带宽:受新基建、数字化转型等国家政策促进及企业降本增效需求的驱动,我国数据中心近年来发展迅速,截至2021年底,全国在用数据中心机架总规模超过520万,近五年年均复合增速超过30%。其中,大型以上数据中心机架规模增长更为迅速,占比达到80%。根据部分省市发布的枢纽集群建设规划,10大集群节点规模共计超500万机架,其中西部枢纽以服务全国算力需求为主,出省带宽预计超80%,东部省份出省带宽预计35%。东数西算将带来骨干网带宽大幅增长,当完成规划的机架数时,预计骨干带宽将增加3000T以上,对算力互联的大带宽提出更高挑战。算间互联延需要确定性低时延:东数西算和数据中心间多级协同开展业务是趋势,数据中心直连网络需要稳定与可靠的低时延,如时延要求较高的数据中心双活业务要求时延在1-2ms以内。发改委牵头的全国一体化大数据中心协同创新体系算力枢纽实施方案中明确,为保障冷温热业务的合理调配,枢纽之间数据中心端到端单向网络时延原则上在 20 毫秒范围内。云边协同需要全光运力网络具备灵活调度能力:根据Gartner预测,到2025 年,约75%企业生成的数据将在数据中心之外创建和处理。边缘计算在智慧交通、安防监控、工业互联网等场景中的应用越来越广泛,通过边缘计算承担了许多实时性、需要快速数据处理的任务,但仍有大量经过处理的数据需要从边缘节点汇集到中心云做进一步的大数据分析挖掘、数据共享,进行算法模型的训练,并将升级后的算法推送到前端,使前端设备及时更新和升级。同时,边缘节点存储的大量数据,也需要备份到云端,防止边缘节点故障导致的数据丢失,所以,需要云与云、云与边、边与边高效协同,而全光运力网络作为连接的纽带和桥梁,就需要具备高度灵活的调度能力,以匹配云边协同的业务需求。用户入算需要便捷接入、灵活敏捷、安全可靠的运力网络:政府、金融、教育等企业机构在城市内广泛分布在不同的地理位置,当他们需要算力服务时,要求可以快速接入全光运力网络;一些企业核心业务需要高安全、低时延,亟需全光运力网络提供保障;新的业务动态性的特点,要求全光运力网络具备灵活敏捷的调整能力,快速惈应客户需求的变化,及时匹配资源、并且也及时释放资源。在F5G Advanced阶段,大带宽、确定性低时延、可调度能力以及快速灵活敏捷的接入的运力网络是品质入算的保障。3.2 品质入算的自智网络算力的全国一体化调度,需要全国范围的端到端资源调度能力:算力网络时代,算力可在全国范围内实现跨区域大范围协同,要求全国资源一盘棋,提出一张网调度,带来了大网管控能力的诉求,目前按照分省、分市分级管理的方式面临挑战。具不完全统计和估算,各运营商在大规模省份平均约1.52万台OTN设备,中等规模省份平均约7千台,小规模省份平均约3千台,结合未来5年发展各运营商全国规模可达到3050万台OTN设备,这就需要管控系统要具备大规模网络的管控能力,并实现端到端的运力调度,同时还要很好地解决网络规模变大后带来的更为复杂的告警管理分析、定界定位、隐患分析等网络运维挑战。随着枢纽算力、省级算力、地市边缘算力的分级部署,用户的算力需求可由不同的算力资源进行惈应,算网大脑需要综合考虑时延、带宽的运力能力和算力惆素做出判断和选择。这就需要全光运力网络的管控系统与算网大脑能够有效协同,统筹进行资源选择和网络连接的建立。在F5G Advanced初期,通过提供全网运力可视,支撑网络资源的灵活调度,提升网络资源调配效率。在F5G Advanced成长阶段,提供网络资源的灵活调度能力和高可靠的业务服务能力,如支持秒级智能调度能力,支撑5个9的高可用率等,从而支撑可保障带宽、可保障时延。在F5G Advanced成熟阶段,通过支持百万级超大网管控,将实现全国一张网的灵活调度,使能东数西算为代表的全国算力资源灵活调度。3.联算:大带宽、确定性、可调度运力,实现品质入算11F5G Advanced 产业白皮书12F5G Advanced 产业白皮书4.绿色全光底座:助力承载网络能效10倍提升面对海量的数据传输和“碳中和”的要求,网络对高效节能的技术方案提出了更高的诉求,在承载网中,光纤传输技术能耗最低,是达成目标的方案首选。在2C场景,把光纤传输延深到基站站点,完全满足5G和未来6G的接入带宽和时延诉求;在2H场景,用光纤传输替换铜线、电缆传输,降低75%能耗,满足用户未来数字家庭的体验;在2B场景,延伸到办公室、厂房的光纤连接大幅减少信号的网络路径功耗,大带宽低时延提升用户的线路品质体验。网络演进到F5G Advanced阶段,光网络需从四个维度实现绿色低碳:第一、光谱从C刱段到L刱段,大幅提升光纤单纤容量,降低每bit功耗;第二、提升设备硬件能效技术降低设备本身耗能、如引入液冷、智能调温控温、洋流算法等优化能耗;第三、实现DC化设备改造进一步提升站点能效;第四,传统光层架构采用FOADM方式部署,网络资源利用率低、业务穿通需要大量人工操作,占用较大机房空间和更高的能耗。通过OXC解决方案简化核心及汇聚光层部署;利用城域池化刱分使能单个汇聚站点通过一块池化单板接入多个接入环,实现多环共享方式,提升刱长资源利用率,降低光层复杂度,实现刱长自动规划;结合二者构建端到端全光极简目标网架构,使能一跳入云、多业务统一承载,从而在网络架构上实现能耗的优化,整网的能效提升10倍以上。在绿色运营上进行多种节能创新:通过设置单板绿色休眠工作模式,降低非业务模式下的能耗;全网实现多级动态节能,实现设备槽位、单板、端口、接口等多级能耗动态管理使光传输设备能耗能效实时最优;强化业务快速接入,敏捷建立连接,实现光层分钟级、电层秒级的建联以及MT级带宽ms级无损调整整体提升运营效率实现精准控制。2.联企:企业广域网、内网数字化升级,实现通感一体1.联家:向FTTX演进,打造全屋智慧家庭随着行业数智化、视频入云、无人值守远程遥控等应用的普及和发展,对行业广域网提出了大带宽,高可靠、小颗粒硬管道的诉求,以SDH技术为核心的行业广域网将升级到新一代OTN网络。利用OTN OSU技术所具备的10M时隙粒度及完全固定时隙复接方式,同时支持4K连接/100G的能力,支撑关键业务数据一跳如云,实现高安全,高可靠、低时延传输。企业内网,承载着企业的办公,视频,监控,采集,及生产系统互联的需求,进一步推进光纤到桌面、光纤到机器形成企业内的无缝光网覆盖,升级现有10GPON网络到50GPON和FTTR Wi-Fi 7等新能力,引入网络硬切片功能,以及确定性承载技术建设一张统一的光网,企业内网将具备末端接入高达10G带宽,ms级低时延以及0干扰的网络能力。面向通感一体,在F5G Advanced阶段,升级设备端口、板卡及管控等功能,将光纤感知功能应用于油气等管道检测、机场等周界安防等领域,使得感知定位精度达到99%准确率和米级精度等商业级应用水准,通感一体帮助构建行业的内生感知能力并进一步延伸出更深的应用。全球运营商整体上通过3个阶段发展FTTH网络,不断深化服务边界和提升业务品质。第一阶段,全光网络具有绿色低碳、高带宽、高稳定性和低延迟等特点,并为用户提供先进的服务和应用,正成为各国绿色和数字化转型的关键战略。各国政府和运营商通过光纤政策牵引、综合光缆网规划、利旧现网基站和回传光纤等各种资源、引入数字化预链接ODN等技术,持续降低FTTH建设TCO等措施,全面加速FTTH建设。第二阶段,随着业务和宽带套餐发展升级到50010000M,发展4K/8K/VR、在线办公/教育、直播等价值业务,通过构建规建验维能力推进光纤延伸到房间,通过10GPON FTTR构建千兆带宽,满足用户真千兆、超低时延、全屋覆盖、无感漫游的千兆体验的家庭网络第三阶段,随着XR、8k超高清、云游戏,家庭多终端的接入,标志着真千兆家庭演进到了智慧家庭阶段,在这个阶段,各种家庭终端都通过全光底座Wi-Fi 7实现互联,为了承载VR,8K等低时延敏感业务,家庭底座需要具有确定性低时延能力,0干扰能力,多宽谱的Wi-Fi7,这个阶段的典型特征为:网络带宽升级为50GPON、Wi-Fi 7实现宽谱接入。升级支持L4自智网络:网络体验支持秒级体验可视、分钟级主动定位、线上精准营销,从而实现业务体验自优可保障、网络级故障自愈。F5G Advanced演进路径13F5G Advanced 产业白皮书14F5G Advanced 产业白皮书3.联算:品质专线向品质入算升级在品质专线阶段,核心理念是实现业务的品质承载,为专线客户提供5个9网络高可用性、低时延、低抖动及可视化能力并能够进行分钟级业务发放,品质专线的用户从党政军高端客户逐步向大中,中小企业扩展,品质专线的典型特征是OTN端到端组网,从覆盖上向最终用户500m-1km范围内延伸,实现快速接入;同时骨干部署400G,城域广泛部署100G 网络,OXC在骨干核心层全面部署增强专线网络的低时延能力。构建城市内1ms、城域到区域集群算力5ms、枢纽间20ms的1-5-20ms三级时延圈。第二阶段:品质入算,本阶段是算力网络的起步阶段,其核心理念是“协同”。光网作为品质算力的承载底座,尽管和算网依然是两个独立的个体,各自编排调度,但光算网开始向布局协同、运营协同发展,通过协同算网服务入口,实现资源互调,满足用户一站开通需求。按需进行算力网络编程,灵活调度泛在的算力资源,降低应用惈应时延,提升系统处理效率,实现算网发展互促互进,共生共赢。典型特征为:OTN从品质专线阶段的按需覆盖完成普遍CO侧覆盖,实现业务到OTN站点300m快速接入,构建算力枢纽间、枢纽内以及用户入算的1-5-20ms低时延圈,引入算力感知功能,能够快速识别算力目的地通过运力网络一跳入云直接接入算力端;对骨干侧速率提速,通过骨干网升级到400G、800G大容量满足算力集中带来的大容量传送要求;管控侧升级支持L4自智网络:全网运力可视,资源池化,秒级自动开通,百万级超大网管控,全面使能可保障带宽、可保障时延的品质运力网络。4.绿色全光底座:老旧设备升级改造、以光换电优化架构、波分向城域、接入延伸构建全光底座向F5G Advanced演进,绿色光传送底座需要从如下几个维度进行升级:行业数字化转型加速带来大量老旧业务和设备面临收编和退网;全球约有200多万套老旧SDH设备在现网运行,随着2G和小颗粒专线业务的逐步迁移,大量SDH占据的机房资源需要清理改造。MS-OTN、OSU小颗粒等技术的成熟使得OTN已经成为替代SDH的必然趋势。参照中国区某市的案例,20 万条SDH业务被OTN替代实现全面割接后,每年节省了166万度电,相当于每年种70000多棵树,节省电费近百万,O改S实现了机房资源90% 的节省。为了应对流量快速增长带来的能耗大幅增加,承载网络一方面通过不断提升单Bit能效,实现总网络能耗不增加,同时通过建设全光目标网,优化架构设计降低整网能耗成为发展的方向:引入OXC以光换电,从电层调度向光层调度演进使得网络具备立体化、Mesh化的全光连接架构;分离式的ROADM向OXC统一平台演进,实现3264维、C120到C120 L120的400G 大带宽的全光调度,可大幅降低骨干流量在电层转发的能耗。OTN从城域核心向城域汇聚、CO机房逐步延伸,通过光电融合的组网架构,进一步减少城域的逐级电层调度层级。同时在XR、8K、云计算/云存储等业务驱动下,OTN光传送阶段进一步延伸到业务接入站点,部署到机房、室外柜、杆站等多种位置,距离用户仅29dBm光功率预算、高密PON线卡仍面临技术挑战,研究方向包括新型大功率激光器及高灵敏度接收芯片、低复杂度DSP算法。17F5G Advanced 产业白皮书18F5G Advanced 产业白皮书全屋一张网稳定高品质体验是FTTR的关键目标。针对传统室内Wi-Fi网络不可控、不稳定等关键问题,FTTR通过中心化的一张网管控架构,依托业务与连接协同、光 Wi-Fi协同、Wi-Fi集中控制等多层次技术增强,使能整网的Wi-Fi AP在频域、时域、空域等多维度精准协同,从而提供整网一致稳定的联接体验以及零丢包无感的漫游体验。权衡业务体验需求以及设备资源限制,获取最优的光与Wi-Fi协同机制、Wi-Fi集中管控算法需要持续的探索研究。全屋一张网极简运维是FTTR的发展基础。一张FTTR网简化为一个管理点,支持一键式 业务发放及智能运维。FTTR一张网运维框架和管理模型有待业界共同研究和定义。一方面,FTTR高品质连接是家庭及小微企业智慧应用的基石;另一方面,广泛分布的光纤和设备本身也具备感知和计算能力,成为产生数据的源头和数据处理的资源,FTTR未来有巨大的潜力提供智慧服务从而增加网络价值。图|集中管控FTTR组网铜线或Wi-Fi回传百兆不稳定主从独立管理运维复杂多点Wi-Fi竞争体验刱动不连续一张网智联底座(全光联接稳定超千兆)一张网极简运维(主FTTR集中管理)一张网稳定体验(光WiFi协同集中控制)331112233122传统室内组网集中管控FTTR组网图|PON多维切片Top8.PON多维切片从Wi-Fi空口、ONU以太网口,到OLT网络侧出口,实现E2E切片保障SLA体验。并通过应用SLA要求的精准感知,实现切片动态创建和资源按需调度等,实现SLA可承诺可视可管,支撑单纤端到端综合业务承载。同时通过家庭/企业内Wi-Fi网络优化、光接入网络时频分等技术匹配毫秒级及更低的微秒级确定性低时延需求。端到端的切片涉及到从接入侧的ONU、OLT网络侧出口,通过合理的组合网络中各个设备的切片,并实现切片动态创建和资源按需调度等,构成端到端的行业专网切片实现一网多用为不同的行业用户提供差异化承载服务。PON接入网络切片包括三个功能:管理切片,主要用于对管理资源进行切片以进行准入控制。在多租户场景中,每个租户可以根据业务需求定制视图,只有自己的网络资源才可视可管理。资源切片是接入网切片的基础,ONU、以太网络侧端口应支持独立划分到一个专网Dedicated-Network,每个D-NET应该拥有独立的转发域。流量切片主要用于对应用进行分类实现确定性差异化的SLA。家庭/园区办公场景内Wi-Fi接口时延和抖动是关键瓶颈。Wi-Fi 7通过OFDMA技术、多用户资源分配和多链路协同算法,实现空口时频分综合切片,有效降低Wi-Fi空口冲突,降低业务转发时延和抖动,实现确定性ms级低时延,匹配XR Pro等业务需要。光接入网络通过引入双平面转发架构,增加TDM转发平面;配合抖动补偿机制,引入单帧多突发技术、独立注册通道技术、协同DBA技术等,实现业务转发层面微秒级低时延转发、微秒级业务抖动,匹配工业远程控制及精密制造等行业数智化诉求。品质家宽品质政企品质行业OLTIP/OTNPON切片控制器19F5G Advanced 产业白皮书VEVEPEPE个性化服务用户商用生产自动化运维运营效率业务意图服务意图资源意图资源意图服务闭环资源闭环资源闭环业务闭环用户闭环实时体验业务增长业务运营资源运营自治域X自治域Y资源运营1234智慧城市智能家居智慧工业制造服务运营图|自智网络架构20F5G Advanced 产业白皮书Top9.智能原生,自智网络电信管理论坛(Telecom ManagementForum,TM Forum)的自智网络项目(Autonomousnetworks(AN)Project)制定针对自智网络的总体框架和分级标准做了定义。另外,欧洲电信标准协会(European Telecommunication StandardsInstitute,ETSI)则从面向资源的业务(ResourceFacing Service,RFS)的角度,研究和标准化如何实现端到端网络和业务的自动化管理,以及人工智能在自智网络中的应用。目前,TM Forum、ETSI、CCSA的各相关项目和工作组,以及其他相关标准组织,已经成立了跨标准组协同组织,共同研究和标准化自智网络,推动自智网络技术在光网络等不同领域的标准落地。目前TMF已经发布了自智网络白皮书,定义了自智网络的系统框架如下图。支撑光网络自智网络的关键技术主要覆盖如下5个技术方向:1)运力可视通过实时感知算网状态,对网络利用率、时延等多惆子进行综合权值分配,计算出满足不同业务SLA需求,同时均衡利用网络资源的路径。面向算网业务的动态化趋势,可引入AI技术自学习算网业务分布特征、时长模式、和增长趋势等,优化多惆子算路能力。面向算网一体化调配,并发计算用户到所有可选算力节点的路由,使上层系统可以根据网络运力度量数据智能决策算网方案。2)秒级自动开通通过打通BSS/OSS各子系统间自动接口,整合设备厂商网络管控系统的光业务自动发放能力,可支持应用驱动的秒级自动开通。系统自动设定业务源/宿地址、用户设备端口类型、带宽和保护、时延等级要求,自动计算满足时延和保护要求的路径和分配资源,创建业务对应的服务层路径或重用现有的服务层路径,并端到端创建连接,实现从天级/周级人工开通到秒级自动发放的提升。3)超大网管控部署Super控制器 域控制器两级架构,Domain控制器负责单域业务调度,Super控制器完成跨域业务调度,两级控制器协同实现百万级大网灵活调度。4)个性化服务OLT具备智能化能力,在线智能识别质差、体验状态、家庭组网、质差瓶颈4类70多个O域标签,从而支撑B域系统面向千兆/FTTR网络,从周级潜客识别到实时推荐的转变,更精准的实现个性化服务。5)体验实时保障:为VIP用户提供专属的端到端拓扑动态可视、故障诊断、体验优化等保障能力,从投诉惈应、投诉定位到例行保障,对可能发生的卡、断、慢问题提供准确的感知&定位能力,从而实现体验可保障。光缆数字化关键技术光通信系统中的设备网元一般难以有效监控光缆网等无源基础设施哑资源的健康度和运营状态,运营商对机房光纤配线架(ODF)和室外光交箱的端口占用状态和跳纤连接关系长期缺乏行之有效的数字化管理手段。随着传感器、人工智能和大数据等先进技术的蓬勃发展,基于各类手持终端设备开发的数字化信息采集和处理工具,及具备光纤质量监控和光缆态势感知能力的智能化设备板卡,结合先进高效的计算视觉和机器视觉算法,将为运营商及其他光缆网业主提供实时、精确的无源设施点、光纤、光缆等海量哑资源的数字化录入、稽核和同步功能。同时,针对光缆线路总里程占比最高的运营商本地网主干和配线光缆段,基于底层光电器件和基础材料的创新突破,已有设备厂商实现了对千兆光网“端到端”光路资源的可视、可管,并逐步成为未来光缆网接入段运维管理的发展方向。光纤传感关键技术光纤传感利用光在经过光纤时的物理性质来检测振动、温度、应变和其他参数的变化。光纤传感利用光纤作为传感器,在光纤沿线创建数千个连续的传感器点。这称为分布式光纤传感。基本原理是使用标准或特定光纤,通过拉曼、瑞利和布里渊分布式光纤传感器技术实现测量。与传统的机电和电子传感器相比,光纤传感有着一系列的优点,该技术以抗电磁干扰、耐腐蚀、易集成、本质安全、距离远、精度高等特点,在大型工程项目中应用优势明显,已被人们广泛关注,并在各个行业涌现出大量成熟应用案例,如油气管道入侵监测、大型园区及轨道交通周界安全、桥梁大坝等大型土木工程结构安全检测,隧道等轨道安全监测等。随着窄线宽光源性能持续提升,多载刱技术,脉冲编逃,特种感应光纤等新技术的成熟应用,叠加人工智能处理光纤传感产生的大数据实现事件自动识别,使光纤传感适应于更多场景,并持续提升光纤传感覆盖距离,感知精度,事件识别准确率等关键性能指标。Wi-Fi传感关键技术弥散在空中的无线电刱,是最佳的传感器。基于Wi-Fi7的感知功能,有着低成本、不间断、不侵犯用户隐私的优势,可以支持室内定位、运动检测、呼吸频率检测等价值应用。Wi-Fi感知技术通常利用信号到达时间(例如IEEE 802.11az)、信号传播路径的信道状态信息(例如IEEE 802.11bf)变化模式来实现感知覆盖范围内人或物体的存在或运动信息。受到使用环境的惇惈,Wi-Fi信号在传输过程中存在干扰、衰落、多径等效应,从而限制了Wi-Fi传感识别的精度和准确率。基于Wi-Fi信号传播的特点,持续提升Wi-Fi感知的精度和准确率是业界研究的热点。为了提升Wi-Fi感知的精度,可以通过匹配人体精细化特征的信号刱形和序列设计使得信号能反应人体特征的细微变化,也可以使用多MIMO天线技术获取更多维的无线信道信息,采用更短刱长的毫米刱也是有潜力的方向。为了提升Wi-Fi感知准确率,可以增强环境抗干扰技术以避免统计特征被干扰淹没,或者探索多AP节点间同步与协调技术以获取整网更准确和丰富的信息。Top10.通感一体化21F5G Advanced 产业白皮书光通信始终处于不断革新和发展的状态。在F5G的第一阶段标准已开始商用的今天,F5G技术还在不断向前发展,ETSI在9月16日会议上正式将F5G演进的名称确定为F5G Advanced,为F5G后续发展定义新的目标和新的能力。随着F5G在千行百业的广泛应用,家庭、企业和工业产生了新的机会和业务诉求,需要持续演进到F5G Advanced,丰富应用、促进创新,打造可持续发展的固网产业。让我们携手,共同迈向F5G Advanced,开启光联万物新时代!总结与展望22F5G Advanced 产业白皮书23F5G Advanced 产业白皮书AI人工智能Burst突发DCI数据中心互联ETSI欧洲电信标准协会F5G第五代固定网络FlexO灵活光传送网FTTH光纤到户场景FTTR光纤到房间FTTO光纤到桌面GPON千兆无源光网络MPM PON多模PON模块NEENetwork网络能效指数HPC高性能计算ICT信息和通信技术oDSP光数字信号处理OT操作技术OLT光线路终端ODN光纤分配网络ONU光网络单元ONT光网络终端OSU光业务单元OSUflex灵活光业务单元ROADM光分插复用器OXC光交叉连接OSS运营支撑系统PLC生产线控制SLA业务等级协议TM Forum电信管理论坛VR虚拟现实WI子工作组Zero Wait零等待Zero Touch零接触Zero Trouble零故障Autonomous networks(AN)自智网络缩略语

    发布时间2022-11-14 59页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • TD产业联盟:2022年第三季度5G产业和市场发展报告(52页).pdf

    5G 产业和市场产业和市场 发展报告发展报告 TD 产业联盟产业联盟 Telecommunication Development Industry Alliance 市场研究系列市场研究系列 版权声.

    发布时间2022-11-09 52页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 中国信通院:2022年5G全连接工厂建设白皮书(37页).pdf

    自2019年“5G+工业互联网”512工程推进方案发布以来,全国各地方、各行业、各企业积极响应、密切合作、创新探索,我国“5G+工业互联网”取得积极进展。2021年工业和信息化部印发了工业互联网创新.

    发布时间2022-11-03 37页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 理特咨询(ADL):5G时代的网络共享(英文版)(18页).pdf

    因此,任何5G网络共享策略都自动意味着4G共享。淘汰2G/3G等传统技术是电信运营商议程上的重要议题,因为他们密切关注每单位吞吐量的成本。这就产生了一个两难的问题:遗留技术应该保持原样,还是与潜在的合.

    发布时间2022-10-25 18页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 埃森哲(Accenture):2022年沉浸式娱乐研究报告-后疫情时代5G如何改变观影体验(英文版)(19页).pdf

    与此同时,更多新内容的发布速度越来越快,2018年上映的电影比2002年多了350部。这带来了一个商业挑战:制作工作室必须大幅增加投资以保持竞争力,但这些投资并没有把更多的人带到电影院。改变了什么?当.

    发布时间2022-10-18 19页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 爱立信(Ericsson):5G网络生命周期管理认知推理白皮书(英文版)(25页).pdf

    在本白皮书中,我们通过以下方法专门解决了网络生命周期管理的分阶段方法的缺点:1)自动化网络生命周期阶段之间的反馈和重构信息,避免不可接受的部署和服务保证延迟;2)持续监视和重构以解决服务需求和网络状态.

    发布时间2022-10-18 25页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 印度宽带论坛(BIF):5G政策和举措全球基准分析报告(2018)(英文版)(40页).pdf

    中国、美国和日本将拥有全球预计12亿个5G移动连接的70%以上。l印度从应对5G挑战中获益良多,也有巨大的机会加速其自身的雄心。它可以借鉴早期领导者的经验,建立5G路线图,有助于推动数字印度战略,并使该国在塑造5G技术方面脱颖而出,成为挑战者。l在此背景下,宽带印度论坛(BIF)要求政策影响伙伴(PIP)准备一份5G政策和市场发展倡议的比较概述,这五个国家被认为是5G的全球领导者:中国、日本、韩国(韩国)、英国和美国。

    发布时间2022-10-09 40页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
  • 印度宽带论坛(BIF):2022年印度非公共5G网络报告(英文版)(40页).pdf

    10Table 2: 5G的性能特征。11表3:5德国、英国、日本、美国等国5g专网部署特点15表4:切片、延迟和波动对用例的相对重要性。19表5:利沃诺端口5G启用操作的一些定性分析结果。

    发布时间2022-10-09 40页 推荐指数推荐指数推荐指数推荐指数推荐指数5星级
960条  共48
前往
客服
商务合作
小程序
服务号
折叠