EPAM:2025大语言模型(LLM)的自动化越狱白皮书(英文版)(15页).pdf

编号:913763 PDF  中文版  DOCX 15页 12.68MB 下载积分:VIP专享
下载报告请您先登录!

EPAM:2025大语言模型(LLM)的自动化越狱白皮书(英文版)(15页).pdf

1、Automated Jailbreaks of Large Language ModelsW H I T E P A P E REPAM.CO MAutomated Jailbreaks of Large Language Models|07/25|2W H I T E P A P E R03IntroductionContents15 Conclusion04 Method 1:Tree-of-Attack with PruningTAP Algorithm 04Test Setup 06Results 06Results After Evaluator Improvement 08Exam

2、ple of a Successful Attack 09Takeaways of Using TAP 1011 Method 2:Using DSPy for JailbreakingExample of Attack Development 13DSPy-Based Attacker vs.TAP 14EPAM.CO MAutomated Jailbreaks of Large Language Models|07/25|3W H I T E P A P E ROne of the most challenging and resource-intensive tasks in large

3、 language model(LLM)red teaming is identifying jailbreaks prompts that bypass a models safety mechanisms to produce harmful or prohibited responses.Finding these prompts is essential for testing the resilience of LLM-based systems,yet it often requires deep domain expertise and extensive manual effo

4、rt.Given these challenges,its natural to ask:Can we use AI to help test AI?Specifically,can we automate the search for jailbreaks by having one AI system attack another in a controlled,repeatable way?In this white paper,we evaluate two existing frameworks that approach this problem from different an

5、gles.The first,tree-of-attack with pruning(TAP),was designed specifically to automate prompt injection and jailbreak discovery.The second,Declarative Self-improving Python(DSPy),is a general-purpose prompt optimization framework that can be repurposed to craft adversarial inputs.We tested both frame

6、works in practical experiments to measure their effectiveness and identify their limitations.Following this experimentation,we assessed their value in real-world cybersecurity strategies.IntroductionEPAM.CO MAutomated Jailbreaks of Large Language Models|07/25|4W H I T E P A P E RUsing the TAP Jailbr

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(EPAM:2025大语言模型(LLM)的自动化越狱白皮书(英文版)(15页).pdf)为本站 (111111) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠