红帽(Red Hat):2025AI推理实践指南:加速迈向高效之路(英文版)(22页).pdf

编号:911806 PDF  中文版  DOCX 22页 5.18MB 下载积分:VIP专享
下载报告请您先登录!

红帽(Red Hat):2025AI推理实践指南:加速迈向高效之路(英文版)(22页).pdf

1、1Table of contentsChallenges of inference servingA full-stack approach to inference performanceA dual approach to model efficiencyWhat is Red Hat AI?Optimizing models with Red Hat1:Optimizing the inference runtime(vLLM)2:Optimizing the AI modelRed Hat AINext stepsIntroduction39101814121222182047Key

2、terms at a glanceThe evolution of large language models3IntroductionOptimizing AI model inference is among the most effective ways to cut infrastructure costs,reduce latency,and improve throughput,especially as organizations deploy large models in production.This e-book introduces the fundamentals o

3、f inference performance engineering and model optimization,with a focus on quantization,sparsity,and other techniques that help reduce compute and memory requirements,as well as runtime systems like Virtual Large Language Model(vLLM),which offer benefits for efficient inference.It also outlines the

4、advantages of using Red Hats open approach,validated model repository,and tools such as the LLM Compressor and Red Hat AI Inference Server.Whether youre running on graphics processor units(GPUs),Tensor Processing Units(TPUs),or other accelerators,this guide offers practical insight to help you build

5、 smarter,more efficient AI inference systems.34 4Key terms at a glanceActivations are temporary data generated as a model processes information(input tokens),similar to intermediate results produced during a calculation.They typically require high precision for accurate results.Weights are the learn

6、ed parameters or settings of an AI model,much like configuration files or settings in traditional software.They determine how the model analyzes and predicts data and can often function effectively at reduced precision.Understanding model components5 5Quantization reduces the size and resource requi

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(红帽(Red Hat):2025AI推理实践指南:加速迈向高效之路(英文版)(22页).pdf)为本站 (111111) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠