DeepLobe:2021面向机器学习与深度学习项目的数据标注权威指南(英文版)(23页).pdf

编号:909828 PDF  DOCX 23页 5.05MB 下载积分:VIP专享
下载报告请您先登录!

DeepLobe:2021面向机器学习与深度学习项目的数据标注权威指南(英文版)(23页).pdf

1、Your Definitive Guide to Data Labelingfor Machine Learning and Deep Learning ProjectsTable of ContentsE-Book-Your Defjnitive Guide to Data LabelingData labelin?Data labeling process02Labeling the data-need of the hour04Types of data labelin?Computer visio?Natural language processin?Audio processing0

2、6Improving effjciency and accuracy of data labelin?Active learning?How does it help?How does it work?08Essential components of data labelin?Annotation tool?Data qualit?Workforce mode?Pricin?Security11Factors to consider for a data labeling platform18Conclusion20Data has become a foundational require

3、ment for any project in recent years.Tiere is no shortage of data sources that generate large volumes of structured and unstructured data.Of late,unstructured data is proving to be an equal contributor to drawing actionable insights by leveraging machine learning and deep learning technologies when

4、this data is used for AI modeling projects.However,to do so,enterprises need tools and human resources to label that data to train,validate,and build quality models with high accuracy.We understand how important data labeling is for any machine learning and deep learning project.Our eBook acts as a

5、comprehensive handbook to data labeling requirements as we dive deeper into the essential elements of this vital but time-consuming task along with the best practices to label the data,and what to look for when choosing the right data labeling platform.Lets start with the basics!E-Book-Your Defjniti

6、ve Guide to Data Labeling011COLLECTData SourcingData ProfjlingAI Model Training&BuildingData IngestionData LabellingDeploy&IterateANALYZEORGANIZE02What is data labeling?Tie AI life cycle begins with collecting the data and organizing it.Data labeling-also synonymous with data annotation/tagging/clas

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(DeepLobe:2021面向机器学习与深度学习项目的数据标注权威指南(英文版)(23页).pdf)为本站 (111111) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠