识别官方公司网站:基于机器学习的 URL 检索方法与人工智能搜索引擎的比较.pdf

编号:718626 PDF 24页 965.76KB 下载积分:VIP专享
下载报告请您先登录!

识别官方公司网站:基于机器学习的 URL 检索方法与人工智能搜索引擎的比较.pdf

1、Donato Summa Web Intelligence Network Conference“From Web to Data”Gdask 4-5/02/2025Web Intelligenge Network ConferenceFrom Web to DataIdentifying Official Firm Websites:A Comparison of Machine Learning-Based URL Retrieval Methods and AI-Powered Search EnginesDonato SummaURL retrievalAll NSIs maintai

2、n extensive administrative information on a long list of national enterprisesunfortunatelythe corresponding list of official website addresses is largely incomplete(at least in Italy).Donato Summa Web Intelligence Network Conference“From Web to Data”Gdask 4-5/02/2025URL retrievalWe need the official

3、 addresses(URLs)of enterprise websites to extract information from their contentbutmanually retrieving official enterprise URLs is a very time-consuming operationsothe idea is to retrieve them automatically!Donato Summa Web Intelligence Network Conference“From Web to Data”Gdask 4-5/02/2025URL retrie

4、valIn the previous ESSnet Big Data 1 and Big Data 2 projects,among other things,we developed and improved URL retrieval systems at the national level.Donato Summa Web Intelligence Network Conference“From Web to Data”Gdask 4-5/02/2025Istat URL retrieval pipelineDonato Summa Web Intelligence Network C

5、onference“From Web to Data”Gdask 4-5/02/2025OBEC annotation exerciseGoal:create an annotated dataset of enterprise-URL pairs Annotation is used to assess the quality of data processing and retrieval pipelines related to,among other things,enterprise URLs(Does the enterprise have one or more website

6、and what are they?)For each country,a sample of 500 legal units was drawn from the 2024 ICT sampling population,stratified by:NACE section(first-level NACE code)enterprise size(10-49,50-249,250+employees)Additional rules:put NACE sections with less than 5%of the sampling population into 1 category m

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(识别官方公司网站:基于机器学习的 URL 检索方法与人工智能搜索引擎的比较.pdf)为本站 (Flechazo) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠