学习修剪和低秩自适应以实现紧凑语言模型部署.pdf

编号:651851 PDF 24页 1.72MB 下载积分:VIP专享
下载报告请您先登录!

学习修剪和低秩自适应以实现紧凑语言模型部署.pdf

1、Copyright 2025 Arizona Board of RegentsLearning to Prune and Low-Rank Adaptation for Compact Language Model DeploymentAuthors:Asmer Hamid Ali(aali115asu.edu),Fan Zhang,Li Yang,Deliang FanEfficient,Secure and Intelligent Computing(ESIC)Laboratory(https:/faculty.engineering.asu.edu/dfan/)Arizona State

2、 UniversityCopyright 2025 Arizona Board of RegentsOutline1.Motivation and Problem StatementChallenges in deploying large pre-trained models.Limitations of existing methods.2.Key ContributionsOverview of proposed approach and its significance.3.Parameter-Efficient Fine-Tuning and Model PruningBackgro

3、und on PEFT techniques.Importance of structured pruning for efficiency.4.Methodology OverviewTrainable pruning masks.Integration with low-rank adaptation.5.Efficient Pruning and Low-Rank AdaptationDetailed explanation with equations and benefits.6.Experimental SetupModels,datasets,and evaluation met

4、rics.7.ResultsPerformance analysis and comparison with baselines.8.ConclusionSummary of contributions and future directions.Copyright 2025 Arizona Board of RegentsGrowing computational demands of large pre-trained models(LPMs).PEFT techniques address training overhead but fail to optimize inference

5、efficiency.Need for a compact and efficientdeployment-ready solution.Figure 1:Chart showing the growth in the size of models overtime with annotations on memory usage and limits of hardware(Source:LLM:The Rise of Data)Motivation and Problem StatementCopyright 2025 Arizona Board of RegentsGrowing com

6、putational demands of large pre-trained models(LPMs).PEFT techniques address training overhead but fail to optimize inference efficiency.Need for a compact and efficientdeployment-ready solution.Figure 2:Table comparing LLaMA-7B models with various PEFT methods,showing parameter reductions and accur

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(学习修剪和低秩自适应以实现紧凑语言模型部署.pdf)为本站 (芦苇) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠