动态协同优化编译器:利用多智能体强化学习提升 DNN 加速器性能.pdf

编号:651841 PDF 16页 1.22MB 下载积分:VIP专享
下载报告请您先登录!

动态协同优化编译器:利用多智能体强化学习提升 DNN 加速器性能.pdf

1、Arya Fayyazi,Mehdi Kamal,Massoud Pedram*afayyazi,mehdi.kamal,pedramusc.eduUniversity of Southern CaliforniaLos Angeles,California,USATuesday,January 21,2025ASP-DAC1Dynamic Co-Optimization Compiler:Leveraging Multi-AgentReinforcement Learning for Enhanced DNN AcceleratorPerformanceMotivation Increasi

2、ng Complexity of neural network modelAdvanced architectures and large-scale workloads demand more than mere software tweaks.Limitations of Existing Auto-TunersTraditional frameworks(e.g.,TVM Chen et al.,2018)primarily focus on software optimizations,leaving hardware optimization potential largely un

3、tapped.Need for HardwareSoftware SynergyJointly optimizing both layers is critical for peak performance but is vastly underexplored.2“Software and Hardware.”Altium Resources,Altium,Related WorkAutoTVM Chen et al.,2018:Uses machine learning-based cost models to optimize DNN configurations but focuses

4、 primarily on software parameters.CHAMELEON Ahn et al.,2020:Employs reinforcement learning for adaptive exploration of the solution space but does not integrate hardware parameter optimization effectively.MetaTune Ryu et al.,2021:Leverages meta-learning for faster adaptation to new optimization spac

5、es but lacks a holistic hardware-software co-design approach.PRIME Kumar et al.,2021:Data-driven offline optimization for hardware design but operates outside of reinforcement learning frameworks,leading to slower compilation times.NaaS Zhou et al.,2022:Joint optimization of neural architectures and

6、 hardware accelerators,but its unified search space approach is extremely large.3Shortcomings of Existing Approaches4Hand-optimized kernels are difficult to design and generally non-scalable.Manual Tuning OverheadFail to do hardware and software co-optimizations(CHAMELEON,NaaS).Lack of HWSW Co-Desig

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(动态协同优化编译器:利用多智能体强化学习提升 DNN 加速器性能.pdf)为本站 (芦苇) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠