E-QUARTIC:用于资源优化学习的卷积神经网络节能边缘集成.pdf

编号:651800 PDF 22页 2.77MB 下载积分:VIP专享
下载报告请您先登录!

E-QUARTIC:用于资源优化学习的卷积神经网络节能边缘集成.pdf

1、System Energy Efficiency Labseelab.ucsd.eduLe Zhang,Onat Gungor,Flavio Ponzina,Tajana RosingContact:Flavio PonzinaPostdoctoral scholarfponzinaucsd.eduThe unstoppable IoT market2Source:IoT Analytics linkEmpowering the edge3EdgeCloudComputing at the edgeDATADATAApplicationsHealthcareVirtual RealitySpa

2、ce&DefenseIndustrial IoTWhy edge computing?Autonomous SystemsSecurity and PrivacyPerformance and EfficiencyEdge Artificial Intelligence(AI)-Small memories-Limited computing resources-Small batteriesSoftwareHardware-Memory-intensity-Compute-intensity-Energy-intensityResearch efforts-Software Optimiza

3、tion-Hardware Optimization-SW/HW co-designEdge AI challenges4High accuracy with limited resources!Deploy Artificial Intelligence in mobile devices5Energy Harvesting(EH)IoTVery limited energy budgetsCan we empower EH IoT with AI capabilities?Dynamic energy availabilityConstrained HW resourcesHarveste

4、rs extract solar,piezoelectric,or thermal energyThey only get limited energy from the environmentLimited memory,storage(KB-MB),and compute resourcesSmall batteries can provide more stable energy sourcesExtracted energy profiles have a dynamic shape 6Optimizing convolutional neural networks for ultra

5、-low power embedded systemsQuantization and Pruning7Floating-point valuesFixed-point valuesReducing operands bitwidth(e.g.,from fp32 to int8)Integer arithmetic improves energy efficiencyIf too aggressive,may result in accuracy degradationQuantizationQuantization ACM TIST23Removes model parameters(e.

6、g.,weights)Fine-grain removes individual weightsCoarse-grain removes entire filtersPruning IEEE TPAMI24Fine-grain pruningCoarse-grain pruningCheng et al.,“A Survey on Deep Neural Network Pruning:Taxonomy,Comparison,Analysis,and Recommendations”,IEEE TPAMI 2024Rokh et al.,“A Comprehensive Survey on M

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(E-QUARTIC:用于资源优化学习的卷积神经网络节能边缘集成.pdf)为本站 (芦苇) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠