1、5G 电力行业主要应用场景 5G 在电力行业主要有四大应用场景,分别为控制类业务、采集类业务、移动应用类业务、以及以多站融合为代表的电网新型业务。在控制类业务中,5G 技术将优化能源配置,避免大面积停电以影响企业和居民用电,同时也将满足于配电网实时动态数据的在线监测应用。在采集类业务中,5G 将推动收集和提供整个系统的原始用电信息。在移动应用类业务中,5G 预防安全事故和环境污染,减少人工巡检工作量,在未来可进行简单的带电操作。在多站融合业务中,5G 技术将推进平台型、共享型企业建设。 5G 赋能未来电力 | 二、5G 电力行业主要应用场景 控制类业务
2、电网控制类对通信需求的典型特征是低时延、高可靠、安全性要求高,适合 5G 技术体制下的uRRLC 应用场景,典型的业务有精准切负荷控制业务和配网差动保护业务。精准负荷控制 (1)应用场景精准负荷控制技术是指当多直流馈入电网发生多直流连续换相失败和故障导致直流闭锁、受端电网有功大幅缺额、频率急剧下降时,根据直流损失功率的大小通过精准控制分散性海量电力用户可中断负荷,实现电网与电源、负荷友好互动,达到电力供需瞬时平衡,支撑能源大范围优化配置,避免了大面积停电的发生,将电网损失降至最小,对企业和居民用电的影响降至最低。 基于 5G 通信网络的精准负荷控制系统由业务终端、需求响应终
3、端、通信网络和主站系统构成。其中,业务终端通过本地网络接入楼宇需求响应终端,需求响应终端通过 5G 通信网络接入需求响应系统主站,具体应用场景如下图所示。 (2)通信需求精准负荷控制系统需快速恢复大电网供需平衡、确保电网频率在直流闭锁故障发生后约 650 毫秒内恢复至正常值(50Hz),因此主站至终端的切负荷指令通信通道传输时延不能超过 50 毫秒。精准负荷控制系统整组动作时延越少,恢复电网故障就越快。因此,对通信的时延是越低越好。对通信的需求中,重点强调时延、可用性、安全性、可靠性。具体通信需求如下: 配网差动保护业务 (1)应用场景配网差动保护技术作为一种在高
4、压输电网中成熟应用的电网技术,可以很好地解决分布电源接入对配电网带来的诸多困扰。其原理是配电差动保护终端比较两端或多端同时刻电流值(矢量),当电流差值超过整定值时判定为故障发生,断开其中的断路器或开关,执行差动保护动作,从而实现了配电网故障的精确定位和隔离。 随着大规模分布式新能源接入配电网,电动汽车充电负荷出现快速增长,用户供需互动日益频繁,配电网的源、网、荷因其更强的时空不确定性呈现出常态化的随机波动和间歇性,配电网的双向潮流、多源故障等诸多问题日益凸显。针对配电网多谐波、强噪声的系统特征,采用高精度、微型化同步相量测量装置(PMU),满足于配电网实时动态数据的在线监测应用。&n
5、bsp;配网自动化系统一般由下列层次组成:配电主站、配电子站(常设在变电站内,可选配)、配电远方终端(FTU、DTU、TTU 等)和通信网络。配电主站负责对整个配电系统建模、实时监控和时钟同步;配电管理系统负责对整个配电网络进行拓扑动态分析,将拓扑变化数据传递给各个 DTU或 FTU 终端,同时对各终端的差动保护功能动态分析,并决定其保护功能投入/退出状态。而配网差动保护作为配网自动化系统的一个子系统,DTU 和 FTU 负责将各自采样数据和跳闸信息传递给相邻的终端,并收集相邻终端的采样数据和运行信息,通过差动保护算法对故障进行快速响应。其特点就是速度快、可动态适应、故障判别可靠等,具体应用场
6、景如下图所示。 (2)通信需求差动保护对电流差值的判断需基于同一时刻的电流值,要求相互关联的两个或多个差动保护终端必须保证时间同步,其时间同步精度<10s,交互信息的传输时延最大不超过 12ms(peer to peer 的最大时延),对通信的需求中,重点强调时延、可用性、可靠性。具体通信需求如下: 2.2 采集类业务 电网采集类业务对通信需求的典型特征是点多面广,有线通信方式覆盖难度大,对通信时延要求不高,适合 5G 技术体制下的 mMT