基于 GPU 的数据科学与分析加速库 RAPIDS- 概览与更新.pdf

编号:29484 PDF 68页 39.86MB 下载积分:VIP专享
下载报告请您先登录!

基于 GPU 的数据科学与分析加速库 RAPIDS- 概览与更新.pdf

1、NVIDIA基于GPU的数据科学与分析加速库RAPIDS概览与更新Sheng Luo#page#WHY GPUS?Numerous hardware advantagesNVIDIADGX A100 System口Thousands of cores with up to -20 TeraFlops of generalpurpose compute performanceUp to 1.5 TB/s of memory bandwidthD皖D0Hardware interconnects for up to 600 GB/s bidirectionalGPU GPU bandwidthCa

2、n scale up to 16x GPUs in a single nodeAlmost never run out of compute relative to memorybandwidth!ZnVIDIA#page#DATA PROCESSING EVOLUTIONFaster Data Access,Less Data MovementHadoop Processing, Reading from DiskHDFSHDFSHDFSHDFSHDFSQuery113ML TrainReadWriteReadWriteRead25-100xImprovementSpark In-Memor

3、y ProcessingLess CodeLanguage FlexiblePrimarily In-MemoryHDFS113QueryML TrainRead5-10x ImprovementTraditional GPU ProcessingMore CodeLanguage RigidCPUCPUSubstantially on GPUHDFSGPUGPUGPLML113WritWrit2uerReadReadReaReaTrain#page#DATA MOVEMENT AND TRANSFORMATIONThe Bane of Productivity and Performance

4、Read DataAPBAPPB100088828CPtAoBCopy&ConvertGPUCPU20Copy&ConvertGPUAPPAAPPALoadData#page#DATA MOVEMENT AND TRANSFORMATIONWhat if We Could Keep Data on the GPU?Read DataAPBAPPB100088828CPtXGPUCPU20opyXConvertGPUAPPAAPPALoadData#page#LEARNING FROM APACHE ARROWPandasIuOSparkParguetHBaseParauetHBaeCassan

5、draKuduCassandraKuduEach system has its own internal memory formatALI systems utilize the same memory format70-80%computationwasted on serialization andNo overhead for cross-system communicationdeserializationProjects can share functionality (eg,Parquet-to-Arrowreader)Similarfuncltiipleprojects#page

6、#DATA PROCESSING EVOLUTIONFaster Data Access,Less Data MovementHDFSHDFSHDFSHDFSHDFS113MLTrainQueryWriteReadReadReadWrite25-100xImprovementLess CodeLanguage FlexibleHDFSPrimarily ln-MemoryML TrainQueryRead5-10x ImprovementTraditional GPU ProcessingMore CodeLanguage RigidCPUCPUGPUGPUHDFSSubstantiatly

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(基于 GPU 的数据科学与分析加速库 RAPIDS- 概览与更新.pdf)为本站 (X-iao) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠