Cognite:2024年工业智能体大语言模型(LLM)与小语言模型(SLM)基准报告(英文版)(10页).pdf

编号:187716 PDF  中文版  DOCX 10页 6.43MB 下载积分:VIP专享
下载报告请您先登录!

Cognite:2024年工业智能体大语言模型(LLM)与小语言模型(SLM)基准报告(英文版)(10页).pdf

1、LLM&SLMBenchmark Reportfor Industrial AgentsThe Cognite Atlas AICopyright,Cognite,2024 www.cognite.ai LLM&SLMBenchmark Reportfor Industrial AgentsThe Cognite Atlas AIThe Industrial AI Problem.4The Essential Roleof Natural Language Search.6Results&Analysis:Benchmarking NaturalLanguage Search Modelsfo

2、r Industry-Specifc Tasks.8Industrial Value is Acceleratedby Industrial Agents.12Methodology.14The Industrial AI ProblemLanguage models often generate plausible but incorrect responses,highlighting a key challenge in developing trustworthy AI solutions for industry.This makes rigorous evaluation esse

3、ntial to ensure reliability,accuracy,and effectiveness.Without proper evaluation,its impossible to know if your language model driven solution whether based on prompt engineering,Retrieval Augmented Generation(RAG),GraphRAG(Context Augmented Generation within Cognite Atlas AI),or fine-tuning truly w

4、orks,or how to improve it.General benchmark datasets,while useful,often fall short for specialized tasks.Standard benchmarks like Measuring Massive Multitask Language Understanding(MMLU)assess broad capabilities that may not directly apply to your specific use case.Tailored evaluations,on the other

5、hand,focus on the exact challenges the model is tasked to address.They offer more relevant insights,ensuring that youre measuring practical performance,not just some abstract capabilities.This also reduces the risk of“gaming”the system,a common issue with standardized tests,and provides clearer crit

6、eria for deciding if a new model is worth adopting.The Cognite Atlas AI LLM&SLM Benchmark Report for Industrial Agents addresses the shortcomings of general benchmark datasets by tailoring large language model(LLM)and small language model(SLM)evaluations to focus on specialized industrial tasks,ensu

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(Cognite:2024年工业智能体大语言模型(LLM)与小语言模型(SLM)基准报告(英文版)(10页).pdf)为本站 (Yoomi) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠