1、摘要2024 的医疗 AI,既是坎坷,又是新生。快速发展的大语言模型,携着生成式 AI 掠过医疗领域。过往的互联网医疗、医学影像、新药研发一个一个场景经由新一代 AI 重塑,焕发出前所未有的价值。不过,发现价值并不意味着能够掘得价值。如今惨淡的融资形势下,躬身大模型的企业们无法像深度学习时代那样随意试错。有限的现金流,意味着每一家企业必须全面考察场景、技术、风控、商业化等方方面面,才能做出决定。因此,今年的人工智能报告将研究核心放在了“场景”与“产品”之上,尝试通过洞悉医院、药企、械企多方的供需逻辑,分析先驱者们的实战案例,为 AI 企业下一步的布局、选品、研发、商业化提供参考建议。核心观点1
2、.伴随 AI 应用的持续扩展与需方对于 AI 认知的不断加深,“提效”取代“政策”成为需方购置 AI 的主要动力。如今,医疗 AI 企业已突破 1-2 亿的营收规模,迈向第一个 10 亿。2.超 160 个影像 AI 获批医疗器械三类证,影像 AI 企业们逐渐跳出影像科,向医学装备、外科手术辅助系统等领域进发,打开了新的百亿市场。3.生成式 AI 对于医疗 IT 的重构已经初现成效。上百个大模型涌入医疗领域,许多互联网医疗、院内信息化系统已经引入相关技术,或能在明年实现规模化落地。4.下行经济形势下,医健企业一级市场融资受阻,IPO 延期。医疗 AI 企业需要加速商业化,在产品形态、市场开拓、
3、伙伴合作等方面实现全面创新,尽快找到扭亏为盈的具体路径。目录第一章:什么构成了医疗第一章:什么构成了医疗 AIAI 的配置动力?的配置动力?.1 11.1 政策主导下的 AI 购置动力.11.2 提效主导下的 AI 购置动力.31.3 部分主体对于医疗 AI 的购置态度.3第二章:自我突破,医疗第二章:自我突破,医疗 AIAI 形态异变形态异变.5 52.1 医学影像 AI:拓宽视野,影像 AI 脱离影像科.62.1.1 产品梳理.72.1.2 注册准入.82.1.3 商业化及应用.112.2 信息学 AI:曾经被动的管理者们,如今主动迎接医疗 IT.162.2.1 乘着 AI 迈向高等级评级
4、.162.2.2 大模型要将医疗 IT 逐一重做一遍.192.3 制药 AI:下行时期,在变化之中寻找新的机遇.232.3.1 技术变化.242.3.2 临床变化.252.3.3 策略变化.262.3.4 制药 AI 面临的挑战.282.4 讨论:颇具规模的 AI 产品矩阵,能够破解商业化难题吗?.29第三章:融资寒冬,医疗第三章:融资寒冬,医疗 AIAI 尽力改善现金流尽力改善现金流.32323.1 一级市场融资整体回落,制药 AI 相对强势.333.2 交表企业普遍亏损收窄,降本创收已成 AI 企业经营核心.383.3 讨论:逆市之下,人工智能如何自救.46第四章:大模型之下,生成式第四章
5、:大模型之下,生成式 AIAI 何以颠覆医疗?何以颠覆医疗?.48484.1 前沿技术:从判别式 AI 到生成式 AI.494.1.1 从判别式 AI 到生成式 AI.494.1.2 基于大模型的应用.504.2 讨论:规模商业化,大模型还要迈几步?.53第五章:医疗人工智能标杆案例第五章:医疗人工智能标杆案例.55555.1 深睿医疗:自研多模态 AI 引擎,数智化助力医院数据资产管理.565.2 医渡科技:“双中台”助力全线产品升级,盈利能力大幅提升.575.3 埃格林医药:“自研管线+AI 服务”双引擎战略,引领国内 AI 制药.595.4 柏视医疗:兼具 AI MDT 放疗与手术双产品
6、线,领跑国内市场.60图表目录图表 2图表 12016 年2024 年涉及医疗 AI 的关键政策(上).1 图表 22016 年2024 年涉及医疗 AI 的关键政策(下).2 图表 3不同主题对于人工智能的需求差异.6 图表 4产品分布图(脏器分布+病种分布).8 图表 52024 年 1-9 月通过第三类医疗器械注册准入的医疗 AI 产品(上).8 图表 62024 年 1-9 月通过第三类医疗器械注册准入的医疗 AI 产品(下).9 图表 7PV-iDose 支持不同 TPS 计划剂量分析、叠加、不同影像序列的剂量叠加15 图表 8人工智能在放疗领域中的扩展应用(上).15 图表 9人工