1、杭州数据协同创新未来实验中心 2024年9月CONTENTS目录01隐私计算产业发展概况022024隐私计算产业图谱03隐私计算技术演进和融合04 隐私计算产业应用分析05隐私计算与人工智能06隐私计算未来展望指导单位杭州市数据资源管理局支持单位浙江省大数据产业技术联盟杭州国际数字交易联盟特别支持单位中关村实验室杭州金智塔科技有限公司浙江蚂蚁密算科技有限公司联通数字科技有限公司联合发起单位浙江大学区块链与数据安全全国重点实验室中国联通智能城市研究院数据要素社杭州数据交易所主编张秉晟 王鹏 熊婷参编人员许苗峰、殷泽原、郭大宇、胡爽、应琦、潘凯伟、林洋、梁子轩、刘泽宇、申奇、申冠生、武通、卢天培、
2、钱润芃、卢益彪、田磊原、冯宇扬、徐泽森、张洵、张文、吴钰沁、彭乐坤、张菊芳、黄益超、谢琴超、周旦、郑超Part One隐私计算产业发展概况2024全球隐私计算报告第一章隐私计算是用于保护数据安全、个人信息和商业秘密,促进数据高效流通、处理和分享等一系列技术的总称助力实现数据“供得出”“流得动”“用得好”“保安全”2023年,国家数据局会同有关部门制定“数据要素”三年行动计划(20242026年)国家数据局积极探索布局数据基础设施,加快数据空间等技术研究,推动隐私计算技术应用,打造安全可信流通环境,为数据要素流通、开发、利用提供支撑隐私计算技术分类 .安全多方计算同态加密零知识证明不经意传输可信
3、执行环境差分隐私数据脱敏隐私计算技术是保障数据安全的关键技术国家数据局围绕数据要素市场化改革开展系列工作2024全球隐私计算报告隐私计算技术是保障数据安全的关键技术隐私计算,通常又被称为隐私保护计算,是“在计算中和计算后保护数据隐私的技术”。-联合国隐私保护计算技术手册优势劣势安全多方计算(MPC)学术界严谨的安全证明数据控制力强不依赖特殊硬件无硬件信任根,国密化方案较为可控有通用运算能力,但性能相对较低数据提供方增多性能会下降,一般适用于5方以下联邦学习(FL)数据控制力强不依赖特殊硬件无硬件信任根,国密化方案较为可控存在部分安全风险无通用运算能力数据提供方增多性能会下降,垂直场景一般建议于
4、10方以下可信执行环境(TEE)理论上支持所有算法计算精度高,与明文一致计算性能支持大规模且性能损失小随着数据提供方增多不会有明显性能下降数据控制力比较弱需要相信硬件信任根需要额外硬件成本差分隐私(DP)可证明可衡量的个体隐私保护技术与上面所有技术路线可独立叠加计算精度明文比会有所下降,需结合算法流程设计不保护数据使用价值同态加密(HE)是经典 MPC、联邦学习方案重要基石,是目前隐私计算 PK 性能的关键通用FHE方案性能挑战大,硬件加速还在发展中零知识证明(ZK)验证速度快,证明通信量较小不泄露任何隐私信息能与其他隐私计算技术联合使用协议复杂,开发成本高大规模计算时证明开销大隐私计算技术路
5、线 隐私计算是“隐私保护计算”(Privacy-Preserving Computation的简称,可以在保证数据提供方不泄露原始数据的前提下,对数据进行分析计算,有效提取数据要素价值,保障了数据在产生、存储、计算、应用、销毁等各个环节中的“可用不可见”。隐私计算以安全多方计算(Secure Multi-party Computation,MPC)、联邦学习(Federated Learning,FL)、可信执行环境(Trusted Execution Environment,TEE)三大技术路线为代表,同时发展出了同态加密、差分隐私等其他密码学技术为辅助的成熟技术体系。隐私计算概述2024全
6、球隐私计算报告 克劳德香农在20世纪40年代发表的重要论文保密系统的通信理论密码学数学理论 1976年Diffie和Hellman创建了公钥加密体制 1978年Rivest等人设计的非对称加密算法RSA和首次提出的同态加密概念 1981年Rabin首次提出不经意传输协议01萌芽期(1949-1981)隐私计算作为独立的概念在产学研界得到关注和发展,并融合密码学、人工智能等多学科技术逐渐形成了综合性技术体系。主流技术相继出现:1982年姚百万富翁问题 1987年Goldreich等人提出的安全多方计算协议 2009年Gentry提出全同态加密及OMTP提出首个可信执行环境标准 2016年中华人民