1、中国信息通信研究院人工智能研究所人工智能关键技术和应用评测工业和信息化部重点实验室2024年9月大模型落地路线图研究报告大模型落地路线图研究报告(2022024 4 年年)版权声明版权声明本报告版权属于中国信息通信研究院,并受法律保护。转载、摘编或利用其它方式使用本报告文字或者观点的,应注明“来源:中国信息通信研究院”。违反上述声明者,编者将追究其相关法律责任。本报告版权属于中国信息通信研究院,并受法律保护。转载、摘编或利用其它方式使用本报告文字或者观点的,应注明“来源:中国信息通信研究院”。违反上述声明者,编者将追究其相关法律责任。更名声明更名声明原“集智”蓝皮报告更名为“集智”专题报告。“
2、集智”专题报告将聚焦于特定领域或主题的深入探讨,提供更为专业和集中的内容分析。原“集智”蓝皮报告更名为“集智”专题报告。“集智”专题报告将聚焦于特定领域或主题的深入探讨,提供更为专业和集中的内容分析。前言前言近年来,大模型技术能力不断创出新高,产业应用持续走深向实,显著加快人工智能通用化、实用化、普惠化发展进程。大模型兼具理论研究和产业应用双重价值,已成为当前科技前瞻布局和创新研发的焦点,受到国际社会高度关注。系统梳理大模型应用落地的共性需求和关键要素,给出现状诊断、能力建设、应用部署、运营管理等落地路线作为参考,将进一步促进大模型赋能千行百业,为打造新质生产力和推进新型工业化开辟新路径。本报
3、告重点梳理了大模型应用落地遵循的诊断、建设、应用、管理四个重要阶段,归纳总结出能力分析、需求挖掘、方案设计、研发测试、应用开发、效能评估、运维监测、运营管理八个关键步骤。基于需求拉动、问题驱动、创新推动原则,研究分析在每一步骤中基础设施层、数据资源层、算法模型层、应用服务层、安全可信层应重点关注的发展要素和亟待解决的核心问题。现状诊断阶段,通过分析大模型技术能力、梳理大模型应用场景、评估大模型发展基础,帮助应用方明晰业务发展和转型需求。能力建设阶段,设计契合应用方战略规划和业务需求的大模型建设方案,通过系统性研发和测试手段筑牢大模型技术底座。应用部署阶段,给出专用大模型优化部署和智能应用定制开
4、发等参考模式,并构建出覆盖大模型设计开发、定制优化、部署运营等全生命周期的应用效能评估体系。运营管理阶段,面向大模型平台和服务给出运维监测和运营管理的参考模式,给出实时监测、动态追踪和预警机制等具体方法,指出建立健全大模型运营管理体系的原则和要点。未来,大模型有望持续为新一轮人工智能阶跃式发展注入强大动能,进一步助力人工智能实现技术能力不断融合创新、应用场景持续纵深拓展、产业生态加速转型升级、治理体系趋于完善稳健。本研究报告对大模型应用落地的研究和理解还有待加强,报告中如有不足之处,还请各方专家读者不吝指正。目录目录一、大模型发展情况概述.1(一)全面提升多模态感知能力,推进认知智能走深向实.
5、2(二)大模型场景落地百花齐放,擘画智能应用生态蓝图.5(三)技术选型与工程实践掣肘,亟需开展落地路线研究.7二、诊断大模型能力基础.9(一)评估大模型能力发展现状,深入挖掘业务转型需求.9(二)梳理人财物要素就绪情况,系统评估人工智能基础.10(三)挖掘各类软硬件资源需求,统筹规划业务发展目标.12三、筑牢大模型技术底座.15(一)剖析大模型关键落地路线,科学确立技术选型原则.15(二)设计大模型智能系统架构,制定科学有效解决方案.16(三)系统研发大模型技术底座,全面开展功能性能测试.20四、革新大模型应用范式.24(一)参照业务场景个性化需求,定制化调优专用大模型.24(二)开发大模型原
6、生智能应用,实现大小模型协同赋能.25(三)构建全链路效能评估体系,形成诊建用评有效闭环.30五、构建大模型管理体系.33(一)梳理国内外模型治理要点,明晰运营管理体系价值.33(二)实时监测大模型运行过程,确保高效稳定提供服务.34(三)建立健全大模型管理体系,保障业务高效稳定开展.37六、大模型发展趋势展望.40(一)探索大模型架构优化方案,带动技术应用双重涌现.40(二)紧抓行业数字化转型机遇,全方位打造新质生产力.42(三)加强引导大模型可信发展,对齐人类偏好及价值观.43图 目 录图 目 录图 1 大模型底层技术支撑人工智能发展.2图 2 大模型的多维感知能力和认知能力.4图 3 大