杨雨豪_推荐系统的大规模图预训练和微调.pdf

编号:169060 PDF 26页 2.99MB 下载积分:VIP专享
下载报告请您先登录!

杨雨豪_推荐系统的大规模图预训练和微调.pdf

1、Yuhao Yang,Yuhao Yang,The University of Hong KongThe University of Hong Kong&WeChatWeChatGraphProGraphPro:Graph Pre-training and Prompt Learning for:Graph Pre-training and Prompt Learning for RecommendationRecommendation腾讯微信技术创新奖腾讯微信技术创新奖&犀牛鸟评选第二名犀牛鸟评选第二名GNNs are successful in RecsysGNNs are success

2、ful in RecsysLightGCN,He et al.2020SGL,Wu et al.2022RLMRec,Ren et al.2024GNNs are successful in RecsysGNNs are successful in RecsysSimGCL,Yu et al.2023Question:Are static GNNs enough for recommendation modeling?Question:Are static GNNs enough for recommendation modeling?The static setting differs gr

3、eatly from real-world recommendation problemsModel performances are hardly to be fairly evaluatedChallenges in deploying and translating in real-world applicationsStatic SettingReal-world Problem“We often conceptualize RecSys as the task of predicting missing values in a static user-item interaction

4、 matrix,rather than predicting a users decision on the next interaction within a dynamicdynamic,changingchanging,and application-specific contextapplication-specific context.”Aixin Sun,Beyond Collaborative Filtering:A Relook at Task Formulation in Recommender SystemsQuestion:Are static GNNs enough f

5、or recommendation modeling?Question:Are static GNNs enough for recommendation modeling?Real-world recommendation brings super large graphs with more than 1B edges,which even evolve continuallyHard to learn and update representationsQuestion:Are static GNNs enough for recommendation modeling?Question

6、:Are static GNNs enough for recommendation modeling?Introducing GraphPro:Pretraining and Introducing GraphPro:Pretraining and PromptingPromptingWhat can be a better training and evaluating settingtraining and evaluating setting for recommenders?How to pre-train and promptpre-train and prompt GNNs fo

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(杨雨豪_推荐系统的大规模图预训练和微调.pdf)为本站 (张5G) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠