面向图数据分布外泛化的因果表示学习.pdf

编号:144912 PDF 58页 29.13MB 下载积分:VIP专享
下载报告请您先登录!

面向图数据分布外泛化的因果表示学习.pdf

1、DataFunSummit#2023面向图数据分布外泛化的因果表示学习陈永强-香港中文大学-博士研究生Yongqiang ChenCUHK,Tencent AI Lab2Towards Causal Representation Learning for Out-of-Distribution Generalization on Graphswith Yatao Bian,Yonggang Zhang,Kaiwen Zhou,Binghui Xie,Tongliang Liu,Bo Han,and James ChengOutOut-ofof-Distribution Generalizati

2、onDistribution GeneralizationModels trained with Empirical Risk Minimization(ERM)are often:-prone to spurious correlations-can hardly generalize to OOD data 3OutOut-ofof-Distribution GeneralizationDistribution GeneralizationThe goal of OOD generalization is:minf:XYmaxeEallLe(f)given a subset of trai

3、ning environments/domains ,where each corresponds to a dataset and a loss.Etr EallE EallDeLe4OutOut-ofof-Distribution GeneralizationDistribution GeneralizationLeveraging the Invariance Principle from causality,previous approaches aim to learn an invariant predictor:minf=w!eEtrLe(w ),s.t.w argminwLe(

4、w ),e Etr,that is simultaneously optimal across different environments/domains.(Peters et al.,2015;Arjovsky et al.,2019;Bottou et al.,2021;)5OutOut-ofof-Distribution GeneralizationDistribution Generalization(Peters et al.,2015;Arjovsky et al.,2019;Rosenfeld et al.,2021;Kamath et al.,2021;Ahuja et al

5、.,2021;)6OutOut-ofof-Distribution Generalization on GraphsDistribution Generalization on GraphsX78OutOut-ofof-Distribution Generalization on GraphsDistribution Generalization on Graphs(Knyazev et al.2019;Hu et al.,2020;Koh et al.,2021;Gui et al.,2022;Chen et al.,2022)A Graph Neural Network(GNN)makes

6、 predictions taking both structure-level and attribute-levelfeatures into account.9OutOut-ofof-Distribution Generalization on GraphsDistribution Generalization on Graphs(Knyazev et al.2019;Hu et al.,2020;Koh et al.,2021;Gui et al.,2022;Chen et al.,2022)OOD generalization on graphs is fundamentally m

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(面向图数据分布外泛化的因果表示学习.pdf)为本站 (2200) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠