基于因果推断的推荐系统.pdf

编号:144849 PDF 86页 5.41MB 下载积分:VIP专享
下载报告请您先登录!

基于因果推断的推荐系统.pdf

1、基于因果推断的推荐系统高宸清华大学 信息国家研究中心https:/ 2023:因果推断在线峰会推荐与因果推断论坛Background2 2 Why is causal inference needed in recommender system?Chen Gao et al.Causal inference in recommender systems:A survey and future directionsJ.arXiv preprint arXiv:2208.12397,2022.Outline3 3 Disentangled learning for user interest an

2、d conformity Disentangled learning for long-term and short-term interests Debiasing in short-video recommendationDisentangling User Interest and Conformity for Recommendation with Causal EmbeddingY.Zheng,Chen Gao,et al.Disentangling user interest and conformity for recommendation with causal embeddi

3、ngC/Proceedings of the Web Conference 2021.2021:2980-2991.4Background5 5 What are the causes behind each user-item interaction?There are two main causes:InterestConformitya best-sellerbuybuyhigh salestire,speed,.How users tend to follow other peopleGoal:Learn disentangled representations for interes

4、t and conformityMotivation6 6 Why learning disentangled representations?Causal recommendation under non-IID situations!IID:independent and identically distributed Robustness Recommenders are trained and updated in real-time Training data and test data are not IID Interpretability Improve user-friend

5、liness Facilitates algorithm developingtraining datatest datarepresentationCausal Recommendation7 7 Inverse Propensity Scoring(IPS)1propensityscore Propensity score is estimated from item popularity Intuition:impose lower weights on popular items,andboost unpopular items Interest and popularity are

6、bundled as one unifiedrepresentationTwo factors are entangled!1 Yang,L.,Cui,Y.,Xuan,Y.,Wang,C.,Belongie,S.,&Estrin,D.(2018,September).Unbiased offline recommender evaluation for missing-not-at-random implicit feedback.In Proceedings of the 12th ACM Conference on Recommender Systems(pp.279-287).Causa

友情提示

1、下载报告失败解决办法
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站报告下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。

本文(基于因果推断的推荐系统.pdf)为本站 (2200) 主动上传,三个皮匠报告文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三个皮匠报告文库(点击联系客服),我们立即给予删除!

温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。
客服
商务合作
小程序
服务号
折叠