1、Flink 新一代流计算和容错-阶段总结和展望梅源(Yuan Mei)Flink引擎架构师,Flink Committer阿里云Flink存储引擎团队负责人Data Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeData Use Cases 图谱Continuo
2、us ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeStream ModeBatch ModeData Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplicat
3、ions Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeBatch ModeStream ModeData Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless r
4、eal timeBatch ModeStream ModeData Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeq 正常处理:高效,低延迟(100ms)q 容错处理:代价相对较大(Sec Min)Flink 流式计算(Stream Mode)Batch Mod
5、eStream ModeData Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeq 正常处理:高效,低延迟(100ms)q 容错处理:代价相对较大(Sec Min)Flink 流式计算(Stream Mode)Batch ModeStream ModeData
6、Use Cases 图谱Continuous ProcessingBatch ProcessingData PipelinesStreaming AnalyticsEvent-drivenApplications Realtime AlertsFraud/Securitymore real timemore real timeless real timeless real timeq 正常处理:高效,低延迟(100ms)q 容错处理:代价相对较大(Sec Min)Flink 流式计算(Stream Mode)Batch ModeStream ModeFault Tolerance 2.0Fau